cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356110 Numbers k such that k^2 + {1,3,7,13,31} are prime.

This page as a plain text file.
%I A356110 #15 Jul 28 2022 03:52:10
%S A356110 4,10,14290,43054,109456,315410,352600,483494,566296,685114,927070,
%T A356110 1106116,1248796,1501174,1997986,2399204,2501404,2553100,2726840,
%U A356110 2874680,3291760,4129394,4473766,4794520,4901144,6350306,7444070,7753456,7892504,8009536,8069540
%N A356110 Numbers k such that k^2 + {1,3,7,13,31} are prime.
%C A356110 Conjecture: the sequence is infinite.
%e A356110 4^2 + {1,3,7,13,31} = {17,19,23,29,47} are all prime.
%p A356110 q:= k-> andmap(j-> isprime(k^2+j), [1,3,7,13,31]):
%p A356110 select(q, [$0..1000000])[];  # _Alois P. Heinz_, Jul 27 2022
%t A356110 Select[Range[10^6], AllTrue[#^2 + {1,3,7,13,31}, PrimeQ] &] (* _Amiram Eldar_, Jul 27 2022 *)
%o A356110 (Python)
%o A356110 from sympy import isprime
%o A356110 def ok(n): return all(isprime(n*n+i) for i in {1,3,7,13,31})
%o A356110 print([k for k in range(10**6) if ok(k)]) # _Michael S. Branicky_, Jul 27 2022
%Y A356110 Cf. A005574, A049422, A114270, A113536, A182238, A356109.
%K A356110 nonn
%O A356110 1,1
%A A356110 _Michel Lagneau_, Jul 27 2022