This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356115 #8 Aug 21 2022 14:09:48 %S A356115 1,0,1,0,1,1,0,3,1,1,0,4,6,3,1,0,9,20,6,6,1,0,11,45,50,15,10,1,0,19, %T A356115 93,185,80,36,15,1,0,22,196,462,490,161,77,21,1,0,33,312,1120,1834, %U A356115 1050,336,148,28,1 %N A356115 Triangle read by rows. The reduced triangle of the partition triangle of reducible permutations with weakly decreasing Lehmer code (A356266). T(n, k) for n >= 1 and 0 <= k < n. %H A356115 Peter Luschny, <a href="https://github.com/PeterLuschny/PermutationsWithLehmer/blob/main/PermutationsWithLehmer.ipynb">Permutations with Lehmer</a>, a SageMath Jupyter Notebook. %e A356115 [ 1] [1] %e A356115 [ 2] [0, 1] %e A356115 [ 3] [0, 1, 1] %e A356115 [ 4] [0, 3, 1, 1] %e A356115 [ 5] [0, 4, 6, 3, 1] %e A356115 [ 6] [0, 9, 20, 6, 6, 1] %e A356115 [ 7] [0, 11, 45, 50, 15, 10, 1] %e A356115 [ 8] [0, 19, 93, 185, 80, 36, 15, 1] %e A356115 [ 9] [0, 22, 196, 462, 490, 161, 77, 21, 1] %e A356115 [10] [0, 33, 312, 1120, 1834, 1050, 336, 148, 28, 1] %o A356115 (SageMath) # uses function reduce_partition_triangle from A356265. %o A356115 def A356115_row(n: int) -> list[int]: %o A356115 return reduce_partition_triangle(A356266_row, n + 1)[n - 1] %o A356115 def A356115(n: int, k: int) -> int: %o A356115 return A356115_row(n)[k] %o A356115 for n in range(1, 11): %o A356115 print([n], A356115_row(n)) %Y A356115 Cf. A356266 (partition version), A356265, A120588 (row sums). %K A356115 nonn,tabl %O A356115 1,8 %A A356115 _Peter Luschny_, Aug 16 2022