A356117 T(n, k) = [x^k] (1/2 - x)^(-n) - (1 - x)^(-n).
0, 1, 3, 3, 14, 45, 7, 45, 186, 630, 15, 124, 630, 2540, 8925, 31, 315, 1905, 8925, 35770, 128898, 63, 762, 5355, 28616, 128898, 515844, 1891890, 127, 1785, 14308, 85932, 429870, 1891890, 7568484, 28113228, 255, 4088, 36828, 245640, 1351350, 6487272, 28113228, 112456344, 421717725
Offset: 0
Examples
Triangle T(n, k) starts: [0] 0; [1] 1, 3; [2] 3, 14, 45; [3] 7, 45, 186, 630; [4] 15, 124, 630, 2540, 8925; [5] 31, 315, 1905, 8925, 35770, 128898; [6] 63, 762, 5355, 28616, 128898, 515844, 1891890; [7] 127, 1785, 14308, 85932, 429870, 1891890, 7568484, 28113228; [8] 255, 4088, 36828, 245640, 1351350, 6487272, 28113228, 112456344, 421717725;
Crossrefs
Programs
-
Maple
ser := series((1/2 - x)^(-n) - (1 - x)^(-n), x, 20): seq(seq(coeff(ser, x, k), k = 0..n), n = 0..9);
-
Mathematica
row[n_] := CoefficientList[Series[(1/2 - x)^(-n) - (1 - x)^(-n), {x, 0, n}], x]; row[0] = {0}; Table[row[n], {n, 0, 8}] // Flatten (* Amiram Eldar, Aug 22 2022 *)
Formula
T(n, k) = (2^(n+k) - 1) * binomial(n+k-1, k). - John Keith, Aug 23 2022