cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356117 T(n, k) = [x^k] (1/2 - x)^(-n) - (1 - x)^(-n).

Original entry on oeis.org

0, 1, 3, 3, 14, 45, 7, 45, 186, 630, 15, 124, 630, 2540, 8925, 31, 315, 1905, 8925, 35770, 128898, 63, 762, 5355, 28616, 128898, 515844, 1891890, 127, 1785, 14308, 85932, 429870, 1891890, 7568484, 28113228, 255, 4088, 36828, 245640, 1351350, 6487272, 28113228, 112456344, 421717725
Offset: 0

Views

Author

Peter Luschny, Aug 22 2022

Keywords

Examples

			Triangle T(n, k) starts:
[0]   0;
[1]   1,    3;
[2]   3,   14,    45;
[3]   7,   45,   186,    630;
[4]  15,  124,   630,   2540,    8925;
[5]  31,  315,  1905,   8925,   35770,  128898;
[6]  63,  762,  5355,  28616,  128898,  515844,  1891890;
[7] 127, 1785, 14308,  85932,  429870, 1891890,  7568484,  28113228;
[8] 255, 4088, 36828, 245640, 1351350, 6487272, 28113228, 112456344, 421717725;
		

Crossrefs

Cf. A000225 (column 0), A059672 (column 1), A059937 (column 2), A131568 (main diagonal), A134346, A327318.

Programs

  • Maple
    ser := series((1/2 - x)^(-n) - (1 - x)^(-n), x, 20):
    seq(seq(coeff(ser, x, k), k = 0..n), n = 0..9);
  • Mathematica
    row[n_] := CoefficientList[Series[(1/2 - x)^(-n) - (1 - x)^(-n), {x, 0, n}], x]; row[0] = {0}; Table[row[n], {n, 0, 8}] // Flatten (* Amiram Eldar, Aug 22 2022 *)

Formula

T(n, k) = (2^(n+k) - 1) * binomial(n+k-1, k). - John Keith, Aug 23 2022