cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356127 a(n) = Sum_{k=1..n} k^k * binomial(floor(n/k)+1,2).

This page as a plain text file.
%I A356127 #17 Jul 28 2022 15:20:42
%S A356127 1,7,37,305,3435,50163,873713,17651465,405072044,10405078324,
%T A356127 295716748946,9211817291426,312086923883692,11424093751088836,
%U A356127 449317984131957736,18896062057875064856,846136323944211829050,40192544399241524385636
%N A356127 a(n) = Sum_{k=1..n} k^k * binomial(floor(n/k)+1,2).
%F A356127 a(n) = Sum_{k=1..n} k * Sum_{d|k} d^(d-1).
%F A356127 G.f.: (1/(1-x)) * Sum_{k>=1} (k * x)^k/(1 - x^k)^2.
%t A356127 a[n_] := Sum[k^k * Binomial[Floor[n/k] + 1, 2], {k, 1, n}]; Array[a, 18] (* _Amiram Eldar_, Jul 28 2022*)
%o A356127 (PARI) a(n) = sum(k=1, n, k^k*binomial(n\k+1, 2));
%o A356127 (PARI) a(n) = sum(k=1, n, k*sumdiv(k, d, d^(d-1)));
%o A356127 (PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k*x)^k/(1-x^k)^2)/(1-x))
%Y A356127 Cf. A355887, A355950.
%K A356127 nonn
%O A356127 1,2
%A A356127 _Seiichi Manyama_, Jul 27 2022