This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356138 #16 Mar 23 2025 18:38:28 %S A356138 1,3,7,9,13,15,17,21,22,26,28,30,34,36,40,42,45,47,49,53,55,59,61,63, %T A356138 66,68,72,74,78,80,82,86,88,91,93,95,99,101,105,107,109,112,114,118, %U A356138 120,124,126,128,132,133,137,139,141,145,147,151,153,156,158,160 %N A356138 a(n) = A137803(A001951(n)). %C A356138 This is the first of four sequences that partition the positive integers. Suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their (increasing) complements, and consider these four sequences: %C A356138 (1) v o u, defined by (v o u)(n) = v(u(n)); %C A356138 (2) v' o u; %C A356138 (3) v o u'; %C A356138 (4) v' o u'. %C A356138 Every positive integer is in exactly one of the four sequences. For the reverse composites, u o v, u o v', u' o v, u' o v', see A356056 to A356059. %C A356138 Assume that if w is any of the sequences u, v, u', v', then lim_{n->oo} w(n)/n exists and defines the (limiting) density of w. For w = u,v,u',v', denote the densities by r,s,r',s'. Then the densities of sequences (1)-(4) exist, and %C A356138 1/(r*r') + 1/(r*s') + 1/(s*s') + 1/(s*r') = 1. %C A356138 For A356138, u, v, u', v', are the Beatty sequences given by u(n) = floor(n*sqrt(2)) and v(n) = floor(n*(1/2 + sqrt(2))), so that r = sqrt(2), s = 1/2 + sqrt(2), r' = 2 + sqrt(2), s' = (9 + 4*sqrt(2))/7. %e A356138 (1) v o u = (1, 3, 7, 9, 13, 15, 17, 21, 22, 26, 28, 30, 34, ...) = A356138 %e A356138 (2) v' o u = (2, 4, 8, 10, 14, 16, 18, 23, 25, 29, 31, 33, 37, ...) = A356139 %e A356138 (3) v o u' = (5, 11, 19, 24, 32, 38, 44, 51, 57, 65, 70, 76, 84, ...) = A356140 %e A356138 (4) v' o u' = (6, 12, 20, 27, 35, 41, 48, 56, 62, 71, 77, 83, 92, ...) = A356141 %t A356138 z = 800; %t A356138 u = Table[Floor[n (Sqrt[2])], {n, 1, z}]; (* A001951 *) %t A356138 u1 = Complement[Range[Max[u]], u] ; (* A001952 *) %t A356138 v = Table[Floor[n (1/2 + Sqrt[2])], {n, 1, z}]; (* A137803 *) %t A356138 v1 = Complement[Range[Max[v]], v] ; (* A137804 *) %t A356138 Table[v[[u[[n]]]], {n, 1, z/8}] (* A356138 *) %t A356138 Table[v1[[u[[n]]]], {n, 1, z/8}] (* A356139 *) %t A356138 Table[v[[u1[[n]]]], {n, 1, z/8}] (* A356140 *) %t A356138 Table[v1[[u1[[n]]]], {n, 1, z/8}] (* A356141 *) %Y A356138 Cf. A001951, A001952, A137804. %Y A356138 Cf. A356056, A356057, A356058, A356059, A356139, A356140, A356141. %K A356138 nonn,easy %O A356138 1,2 %A A356138 _Clark Kimberling_, Aug 06 2022