cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356141 a(n) = A137804(A001952(n)).

This page as a plain text file.
%I A356141 #13 Mar 23 2025 04:34:21
%S A356141 6,12,20,27,35,41,48,56,62,71,77,83,92,98,106,113,121,127,134,142,148,
%T A356141 157,163,169,177,184,192,198,207,213,219,228,234,242,249,255,263,270,
%U A356141 278,284,291,299,305,314,320,328,335,341,349,355,364,370,376,385,391
%N A356141 a(n) = A137804(A001952(n)).
%C A356141 This is the fourth of four sequences that partition the positive integers. See A356138.
%e A356141 (1)  v o u   = (1,  3,  7,  9, 13, 15, 17, 21, 22, 26, 28, 30, 34, ...) = A356138
%e A356141 (2)  v' o u  = (2,  4,  8, 10, 14, 16, 18, 23, 25, 29, 31, 33, 37, ...) = A356139
%e A356141 (3)  v o u'  = (5, 11, 19, 24, 32, 38, 44, 51, 57, 65, 70, 76, 84, ...) = A356140
%e A356141 (4)  v' o u' = (6, 12, 20, 27, 35, 41, 48, 56, 62, 71, 77, 83, 92, ...) = A356141
%t A356141 z = 800;
%t A356141 u = Table[Floor[n (Sqrt[2])], {n, 1, z}];   (*A001951*)
%t A356141 u1 = Complement[Range[Max[u]], u] ;    (*A001952*)
%t A356141 v = Table[Floor[n (1/2 + Sqrt[2])], {n, 1, z}];  (*A137803*)
%t A356141 v1 = Complement[Range[Max[v]], v] ;     (*A137804*)
%t A356141 Table[v[[u[[n]]]], {n, 1, z/8}]   (*A356138 *)
%t A356141 Table[v1[[u[[n]]]], {n, 1, z/8}]  (* A356139*)
%t A356141 Table[v[[u1[[n]]]], {n, 1, z/8}]  (* A356140 *)
%t A356141 Table[v1[[u1[[n]]]], {n, 1, z/8}] (* A356141 *)
%Y A356141 Cf. A001951, A001952, A137804.
%Y A356141 Cf. A356056, A356057, A356058, A356059, A356138, A356139, A356140.
%K A356141 nonn,easy
%O A356141 1,1
%A A356141 _Clark Kimberling_, Aug 06 2022