This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356141 #13 Mar 23 2025 04:34:21 %S A356141 6,12,20,27,35,41,48,56,62,71,77,83,92,98,106,113,121,127,134,142,148, %T A356141 157,163,169,177,184,192,198,207,213,219,228,234,242,249,255,263,270, %U A356141 278,284,291,299,305,314,320,328,335,341,349,355,364,370,376,385,391 %N A356141 a(n) = A137804(A001952(n)). %C A356141 This is the fourth of four sequences that partition the positive integers. See A356138. %e A356141 (1) v o u = (1, 3, 7, 9, 13, 15, 17, 21, 22, 26, 28, 30, 34, ...) = A356138 %e A356141 (2) v' o u = (2, 4, 8, 10, 14, 16, 18, 23, 25, 29, 31, 33, 37, ...) = A356139 %e A356141 (3) v o u' = (5, 11, 19, 24, 32, 38, 44, 51, 57, 65, 70, 76, 84, ...) = A356140 %e A356141 (4) v' o u' = (6, 12, 20, 27, 35, 41, 48, 56, 62, 71, 77, 83, 92, ...) = A356141 %t A356141 z = 800; %t A356141 u = Table[Floor[n (Sqrt[2])], {n, 1, z}]; (*A001951*) %t A356141 u1 = Complement[Range[Max[u]], u] ; (*A001952*) %t A356141 v = Table[Floor[n (1/2 + Sqrt[2])], {n, 1, z}]; (*A137803*) %t A356141 v1 = Complement[Range[Max[v]], v] ; (*A137804*) %t A356141 Table[v[[u[[n]]]], {n, 1, z/8}] (*A356138 *) %t A356141 Table[v1[[u[[n]]]], {n, 1, z/8}] (* A356139*) %t A356141 Table[v[[u1[[n]]]], {n, 1, z/8}] (* A356140 *) %t A356141 Table[v1[[u1[[n]]]], {n, 1, z/8}] (* A356141 *) %Y A356141 Cf. A001951, A001952, A137804. %Y A356141 Cf. A356056, A356057, A356058, A356059, A356138, A356139, A356140. %K A356141 nonn,easy %O A356141 1,1 %A A356141 _Clark Kimberling_, Aug 06 2022