This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356149 #11 Jul 31 2022 19:54:04 %S A356149 1,1,2,1,3,1,2,3,4,1,2,5,1,2,3,6,1,3,7,1,2,3,4,7,8,1,2,3,4,6,9,1,2,5, %T A356149 10,1,2,3,4,5,11,1,2,3,4,6,12,1,2,3,5,6,13,1,2,3,6,7,14,1,3,7,15,1,2, %U A356149 3,4,7,8,15,16,1,2,3,4,6,7,8,14,17,1,2,3,4,5,6,9,13,18 %N A356149 Irregular table T(n, k), n > 0, k = 1..A356148(n), read by rows; the n-th row contains, in ascending order, the distinct positive integers whose binary expansion appears as a substring in the binary expansion of n or its complement. %C A356149 Leading 0's in binary expansions are ignored. %C A356149 The n-th contains the n-th row of A165416. %H A356149 Rémy Sigrist, <a href="/A356149/b356149.txt">Table of n, a(n) for n = 1..26775</a> %H A356149 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A356149 T(n, 1) = 1. %F A356149 T(n, A356148(n)) = n. %e A356149 Table T(n, k) begins: %e A356149 1; %e A356149 1, 2; %e A356149 1, 3; %e A356149 1, 2, 3, 4; %e A356149 1, 2, 5; %e A356149 1, 2, 3, 6; %e A356149 1, 3, 7; %e A356149 1, 2, 3, 4, 7, 8; %e A356149 1, 2, 3, 4, 6, 9; %e A356149 1, 2, 5, 10; %e A356149 1, 2, 3, 4, 5, 11; %e A356149 1, 2, 3, 4, 6, 12; %e A356149 1, 2, 3, 5, 6, 13; %e A356149 1, 2, 3, 6, 7, 14; %e A356149 1, 3, 7, 15; %e A356149 1, 2, 3, 4, 7, 8, 15, 16; %e A356149 ... %o A356149 (PARI) row(n) = { my (b=binary(n)); setbinop((i,j) -> my (s=fromdigits(b[i..j],2)); if (b[i], s, 2^(j-i+1)-1-s), [1..#b]) } %o A356149 (Python) %o A356149 def row(n): %o A356149 N = n.bit_length() %o A356149 c, s = ((1<<N)-1)^n, set() %o A356149 for i in range(N): %o A356149 for l in range(N-i): %o A356149 mask = ((2<<l)-1) << i %o A356149 s.add((mask&n) >> i) %o A356149 s.add((mask&c) >> i) %o A356149 return sorted(s - {0}) %o A356149 print([t for r in range(19) for t in row(r)]) # _Michael S. Branicky_, Jul 28 2022 %Y A356149 Cf. A165416, A356148, A356150. %K A356149 nonn,base,tabf %O A356149 1,3 %A A356149 _Rémy Sigrist_, Jul 28 2022