A356150 a(n) is the sum of the positive integers whose binary expansion appears as a substring in the binary expansion of n or its complement.
1, 3, 4, 10, 8, 12, 11, 25, 25, 18, 26, 28, 30, 33, 26, 56, 62, 61, 56, 56, 39, 63, 64, 67, 62, 66, 72, 77, 80, 78, 57, 119, 139, 143, 137, 135, 134, 119, 134, 134, 134, 81, 120, 138, 139, 147, 142, 146, 147, 148, 132, 153, 140, 157, 165, 165, 168, 174, 181
Offset: 1
Examples
For n = 11: - row 11 of A356149 is 1, 2, 3, 4, 5, 11, - so a(11) = 1 + 2 + 3 + 4 + 5 + 11 = 26.
Links
Programs
-
PARI
a(n) = { my (b=binary(n)); vecsum(setbinop((i,j) -> my (s=fromdigits(b[i..j],2)); if (b[i], s, 2^(j-i+1)-1-s), [1..#b])) }
-
Python
def a(n): N = n.bit_length() c, s = ((1<
> i) s.add((mask&c) >> i) return sum(s) print([a(n) for n in range(1, 60)]) # Michael S. Branicky, Jul 28 2022
Comments