This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356155 #12 Jul 31 2022 08:15:31 %S A356155 1,4,2,7,12,3,12,19,30,4,11,54,41,56,5,20,26,225,79,110,6,15,87,58, %T A356155 588,131,156,7,32,37,310,94,1815,193,238,8,33,216,69,861,162,3042,269, %U A356155 304,9,32,140,1500,117,2156,218,6069,355,414,10,21,120,427,5488,183,3835,314,8664,491,580,11,52,44,455,1254,26620,255,6834,422,14283,629,682,12 %N A356155 The pi-based arithmetic derivative applied to prime shift array: Square array A(n,k) = A258851(A246278(n,k)), read by falling antidiagonals. %C A356155 Each column is strictly monotonic. %H A356155 Antti Karttunen, <a href="/A356155/b356155.txt">Table of n, a(n) for n = 1..22155; the first 210 antidiagonals</a> %H A356155 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %e A356155 The top left corner of the array: %e A356155 k = 1 2 3 4 5 6 7 8 9 10 11 12 %e A356155 2k = 2 4 6 8 10 12 14 16 18 20 22 24 %e A356155 -----+-------------------------------------------------------------------------- %e A356155 n= 1 | 1, 4, 7, 12, 11, 20, 15, 32, 33, 32, 21, 52, %e A356155 2 | 2, 12, 19, 54, 26, 87, 37, 216, 140, 120, 44, 351, %e A356155 3 | 3, 30, 41, 225, 58, 310, 69, 1500, 427, 455, 86, 2075, %e A356155 4 | 4, 56, 79, 588, 94, 861, 117, 5488, 1254, 1022, 132, 8183, %e A356155 5 | 5, 110, 131, 1815, 162, 2156, 183, 26620, 2561, 2717, 214, 31581, %e A356155 6 | 6, 156, 193, 3042, 218, 3835, 255, 52728, 4828, 4316, 304, 67093, %e A356155 7 | 7, 238, 269, 6069, 314, 6834, 373, 137564, 7695, 8075, 404, 154615, %e A356155 8 | 8, 304, 355, 8664, 422, 10241, 457, 219488, 12098, 12426, 524, 261003, %e A356155 9 | 9, 414, 491, 14283, 532, 17296, 609, 438012, 20909, 18653, 668, 535877, %e A356155 10 | 10, 580, 629, 25230, 718, 27231, 787, 975560, 29388, 31552, 836, 1050409, %o A356155 (PARI) %o A356155 up_to = 78; %o A356155 A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f)); %o A356155 A258851(n) = (n*sum(i=1, #n=factor(n)~, n[2, i]*primepi(n[1, i])/n[1, i])); \\ From A258851 %o A356155 A356155sq(row,col) = A258851(A246278sq(row,col)); %o A356155 A356155list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A356155sq(col,(a-(col-1))))); (v); }; %o A356155 v356155 = A356155list(up_to); %o A356155 A356155(n) = v356155[n]; %Y A356155 Cf. A000027 (column 1), A097240 (column 3), A246278, A258851. %Y A356155 Cf. also A344027. %K A356155 nonn,tabl %O A356155 1,2 %A A356155 _Antti Karttunen_, Jul 29 2022