This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356157 #11 Aug 04 2022 22:27:19 %S A356157 1,1,1,1,1,6,1,1,1,2,1,2,1,2,3,1,1,3,1,2,1,2,1,6,1,2,1,28,1,2,1,1,3,2, %T A356157 1,1,1,2,1,3,1,6,1,2,3,2,1,2,1,1,2,2,1,6,1,2,1,2,1,3,1,2,1,1,1,2,1,2, %U A356157 3,2,1,3,1,2,1,2,1,3,1,2,1,2,1,28,1,2,3,2,1,2,7,2,1,2,3,3,1,1,3,1,1,2,1,2,3 %N A356157 The nearest common ancestor of sigma(n) and gcd(n, sigma(n)) in the Doudna tree (A005940). %H A356157 Antti Karttunen, <a href="/A356157/b356157.txt">Table of n, a(n) for n = 1..65537</a> %H A356157 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A356157 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %o A356157 (PARI) %o A356157 Abincompreflen(n, m) = { my(x=binary(n),y=binary(m),u=min(#x,#y)); for(i=1,u,if(x[i]!=y[i],return(i-1))); (u);}; %o A356157 Abinprefix(n,k) = { my(digs=binary(n)); fromdigits(vector(k,i,digs[i]),2); }; %o A356157 A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); }; %o A356157 A156552(n) = {my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552 %o A356157 A348040sq(x,y) = Abincompreflen(A156552(x), A156552(y)); %o A356157 A348041sq(x,y) = A005940(1+Abinprefix(A156552(x),A348040sq(x,y))); %o A356157 A356157(n) = A348041sq(sigma(n),gcd(n, sigma(n))); %Y A356157 Cf. A000203, A009194, A336702 (fixed points), A348040, A348041. %Y A356157 Cf. also A347879, A356156, A356307. %K A356157 nonn %O A356157 1,6 %A A356157 _Antti Karttunen_, Jul 30 2022