This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356158 #10 Aug 04 2022 22:27:14 %S A356158 1,2,1,2,1,6,1,2,1,2,1,3,1,1,3,2,1,2,1,10,1,2,1,6,1,1,1,28,1,2,1,2,3, %T A356158 2,1,2,1,1,1,1,1,3,1,1,3,2,1,3,1,2,1,2,1,2,1,1,1,1,1,3,1,1,1,2,5,2,1, %U A356158 1,3,2,1,2,1,1,1,1,1,1,1,5,1,1,1,1,1,1,3,1,1,3,1,1,1,2,1,3,1,2,1,2,1,2,1,1,3 %N A356158 a(n) = gcd(n, A347879(n)). %C A356158 The fixed points of this sequence is given by the union of {2} and A336702. %H A356158 Antti Karttunen, <a href="/A356158/b356158.txt">Table of n, a(n) for n = 1..65537</a> %H A356158 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A356158 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %F A356158 a(n) = gcd(n, A347879(n)). %o A356158 (PARI) %o A356158 Abincompreflen(n, m) = { my(x=binary(n),y=binary(m),u=min(#x,#y)); for(i=1,u,if(x[i]!=y[i],return(i-1))); (u);}; %o A356158 Abinprefix(n,k) = { my(digs=binary(n)); fromdigits(vector(k,i,digs[i]),2); }; %o A356158 A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); }; %o A356158 A156552(n) = {my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552 %o A356158 A348040sq(x,y) = Abincompreflen(A156552(x), A156552(y)); %o A356158 A348041sq(x,y) = A005940(1+Abinprefix(A156552(x),A348040sq(x,y))); %o A356158 A347879(n) = A348041sq(n,sigma(n)); %o A356158 A356158(n) = gcd(n, A347879(n)); %Y A356158 Cf. A000203, A336702, A347879, A348040, A348041. %Y A356158 Cf. also A356156, A356157, A356308. %K A356158 nonn %O A356158 1,2 %A A356158 _Antti Karttunen_, Jul 30 2022