This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356175 #72 Mar 07 2023 18:53:17 %S A356175 2,4,10,14290,64390,74554,83464,93460,132304,238850,262630,277630, %T A356175 300206,352600,376190,404954,415180,610340,806180,984686,1025650, %U A356175 1047050,1106116,1382860,2014624,2440714,2525870,2538344,2760026,2826380,3145600,3508586,3715156 %N A356175 Numbers k such that k^2 + {1,3,7,13,163} are prime. %C A356175 For 14 <= m <= 999 and k <= A356110(31) = 8069560, the number of sets of primes of the form k^2 + {1,3,7,13,m} is the greatest for m = 163. There are 51 such terms. See b-file. %C A356175 All terms are 2 or 4 modulo 6. %H A356175 David A. Corneth, <a href="/A356175/b356175.txt">Table of n, a(n) for n = 1..6757</a> (first 237 terms from Jean-Marc Rebert, terms <= 10^10). %e A356175 2 is a term since 2^2 + {1,3,7,13,163} = {5,7,11,17,167} are all primes. %p A356175 q:= k-> andmap(j-> isprime(k^2+j), [1, 3, 7, 13, 163]): %p A356175 select(q, [$0..1000000])[]; # _Alois P. Heinz_, Jul 28 2022 %t A356175 Select[Range[4*10^6], AllTrue[#^2 + {1, 3, 7, 13, 163}, PrimeQ] &] (* _Amiram Eldar_, Jul 28 2022 *) %o A356175 (PARI) %o A356175 is(k)=my(v=[1,3,7,13,163],ok=1);for(i=1,#v,if(!isprime(k^2+v[i]),ok=0;break));ok %o A356175 (Python) %o A356175 from sympy import isprime %o A356175 def ok(n): return all(isprime(n*n+i) for i in {1,3,7,13,163}) %o A356175 print([k for k in range(10**6) if ok(k)]) # _Michael S. Branicky_, Jul 28 2022 %Y A356175 Cf. A356110. %Y A356175 Subsequence of A005574, A049422, A114270, A113536, A080149, A182238 and A356109. %K A356175 nonn %O A356175 1,1 %A A356175 _Jean-Marc Rebert_, Jul 28 2022