A356177 Palindromes in A333369.
1, 3, 5, 7, 9, 22, 44, 66, 88, 111, 212, 232, 252, 272, 292, 333, 414, 434, 454, 474, 494, 555, 616, 636, 656, 676, 696, 777, 818, 838, 858, 878, 898, 999, 2002, 2222, 2442, 2662, 2882, 4004, 4224, 4444, 4664, 4884, 6006, 6226, 6446, 6666, 6886, 8008, 8228, 8448, 8668, 8888, 10101
Offset: 1
Examples
474 is palindrome and 474 has two 4's and one 7 in its decimal expansion, hence 474 is a term.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
simQ[n_] := AllTrue[Tally @ IntegerDigits[n], EvenQ[Plus @@ #] &]; Select[Range[10^4], PalindromeQ[#] && simQ[#] &] (* Amiram Eldar, Jul 28 2022 *)
-
Python
from itertools import count, islice, product def simb(n): s = str(n); return all(s.count(d)%2==int(d)%2 for d in set(s)) def pals(): # generator of palindromes digits = "0123456789" for d in count(1): for p in product(digits, repeat=d//2): if d > 1 and p[0] == "0": continue left = "".join(p); right = left[::-1] for mid in [[""], digits][d%2]: yield int(left + mid + right) def agen(): yield from filter(simb, pals()) print(list(islice(agen(), 55))) # Michael S. Branicky, Jul 28 2022
-
Python
# faster version based on Comments from itertools import count, islice, product def odgen(d): yield from [1, 3, 5, 7, 9] if d == 1 else sorted(int(f+"".join(p)+o+"".join(p[::-1])+f) for o in "13579" for f in o + "2468" for p in product(o+"02468", repeat=d//2-1)) def evgen(d): yield from (int(f+"".join(p)+"".join(p[::-1])+f) for f in "2468" for p in product("02468", repeat=d//2-1)) def A356177gen(): for d in count(1, step=2): yield from odgen(d); yield from evgen(d+1) print(list(islice(A356177gen(), 55))) # Michael S. Branicky, Jul 30 2022
Comments