Original entry on oeis.org
2, 4, 9, 11, 16, 18, 21, 26, 28, 33, 35, 37, 42, 44, 49, 52, 56, 59, 61, 66, 68, 73, 75, 78, 82, 85, 89, 92, 97, 99, 101, 106, 108, 113, 115, 118, 123, 125, 130, 132, 134, 139, 141, 146, 149, 153, 156, 158, 163, 165, 170, 172, 175, 179, 182, 186, 189, 194
Offset: 1
(1) v o u = (1, 3, 6, 8, 12, 13, 15, 19, 20, 24, 25, 27, 31, 32, ...) = A356180
(2) v' o u = (2, 4, 9, 11, 16, 18, 21, 26, 28, 33, 35, 37, 42, 44, ...) = A356181
(3) v o u' = (5, 10, 17, 22, 29, 34, 39, 46, 51, 58, 64, 69, 76, ...) = A356182
(4) v' o u' = (7, 14, 23, 30, 40, 47, 54, 63, 70, 80, 87, 94, 104, ...) = A356183
-
z = 800; zz = 100;
u = Table[Floor[n*Sqrt[2]], {n, 1, z}]; (* A001951 *)
u1 = Complement[Range[Max[u]], u]; (* A001952 *)
v = Table[Floor[n*Sqrt[3]], {n, 1, z}]; (* A022838 *)
v1 = Complement[Range[Max[v]], v]; (* A054406 *)
Table[v[[u[[n]]]], {n, 1, zz}] (* A356180 *)
Table[v1[[u[[n]]]], {n, 1, zz}] (* A356181 *)
Table[v[[u1[[n]]]], {n, 1, zz}] (* A356182 *)
Table[v1[[u1[[n]]]], {n, 1, zz}] (* A356183 *)
Original entry on oeis.org
5, 10, 17, 22, 29, 34, 39, 46, 51, 58, 64, 69, 76, 81, 88, 93, 100, 105, 110, 117, 122, 129, 135, 140, 147, 152, 159, 164, 171, 176, 181, 188, 193, 200, 206, 211, 218, 223, 230, 235, 240, 247, 252, 259, 265, 271, 277, 282, 289, 294, 301, 306, 311, 318, 323
Offset: 1
(1) v o u = (1, 3, 6, 8, 12, 13, 15, 19, 20, 24, 25, 27, 31, 32, ...) = A356180
(2) v' o u = (2, 4, 9, 11, 16, 18, 21, 26, 28, 33, 35, 37, 42, 44, ...) = A356181
(3) v o u' = (5, 10, 17, 22, 29, 34, 39, 46, 51, 58, 64, 69, 76, ...) = A356182
(4) v' o u' = (7, 14, 23, 30, 40, 47, 54, 63, 70, 80, 87, 94, 104, ...) = A356183
-
z = 800; zz = 100;
u = Table[Floor[n*Sqrt[2]], {n, 1, z}]; (* A001951 *)
u1 = Complement[Range[Max[u]], u]; (* A001952 *)
v = Table[Floor[n*Sqrt[3]], {n, 1, z}]; (* A022838 *)
v1 = Complement[Range[Max[v]], v]; (* A054406 *)
Table[v[[u[[n]]]], {n, 1, zz}] (* A356180 *)
Table[v1[[u[[n]]]], {n, 1, zz}] (* A356181 *)
Table[v[[u1[[n]]]], {n, 1, zz}] (* A356182 *)
Table[v1[[u1[[n]]]], {n, 1, zz}] (* A356183 *)
-
from math import isqrt
def A356182(n): return isqrt(3*((k:=n<<1)+isqrt(k*n))**2) # Chai Wah Wu, Sep 05 2022
Original entry on oeis.org
7, 14, 23, 30, 40, 47, 54, 63, 70, 80, 87, 94, 104, 111, 120, 127, 137, 144, 151, 160, 167, 177, 184, 191, 201, 208, 217, 224, 234, 241, 248, 257, 264, 274, 281, 288, 298, 305, 314, 321, 328, 338, 345, 354, 362, 371, 378, 385, 395, 402, 411, 418, 425, 435
Offset: 1
(1) v o u = (1, 3, 6, 8, 12, 13, 15, 19, 20, 24, 25, 27, 31, 32, ...) = A356180
(2) v' o u = (2, 4, 9, 11, 16, 18, 21, 26, 28, 33, 35, 37, 42, 44, ...) = A356181
(3) v o u' = (5, 10, 17, 22, 29, 34, 39, 46, 51, 58, 64, 69, 76, ...) = A356182
(4) v' o u' = (7, 14, 23, 30, 40, 47, 54, 63, 70, 80, 87, 94, 104, ...) = A356183
-
z = 800; zz = 100;
u = Table[Floor[n*Sqrt[2]], {n, 1, z}]; (* A001951 *)
u1 = Complement[Range[Max[u]], u]; (* A001952 *)
v = Table[Floor[n*Sqrt[3]], {n, 1, z}]; (* A022838 *)
v1 = Complement[Range[Max[v]], v]; (* A054406 *)
Table[v[[u[[n]]]], {n, 1, zz}] (* A356180 *)
Table[v1[[u[[n]]]], {n, 1, zz}] (* A356181 *)
Table[v[[u1[[n]]]], {n, 1, zz}] (* A356182 *)
Table[v1[[u1[[n]]]], {n, 1, zz}] (* A356183 *)
Showing 1-3 of 3 results.
Comments