cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356185 The difference between number of even and number of odd Grassmannian permutations of size n.

This page as a plain text file.
%I A356185 #30 Jul 30 2022 11:44:35
%S A356185 1,1,0,1,0,3,2,9,8,23,22,53,52,115,114,241,240,495,494,1005,1004,2027,
%T A356185 2026,4073,4072,8167,8166,16357,16356,32739,32738,65505,65504,131039,
%U A356185 131038,262109,262108,524251,524250,1048537,1048536,2097111,2097110,4194261,4194260
%N A356185 The difference between number of even and number of odd Grassmannian permutations of size n.
%C A356185 A permutation is Grassmann if it has at most one descent. A closed-form formula was proved by J. B. Gil and J. A. Tomasko.
%H A356185 Juan B. Gil and Jessica A. Tomasko, <a href="https://arxiv.org/abs/2112.03338">Restricted Grassmannian permutations</a>, arXiv:2112.03338 [math.CO], 2021.
%H A356185 Juan B. Gil and Jessica A. Tomasko, <a href="https://doi.org/10.54550/ECA2022V2S4PP6">Restricted Grassmannian permutations</a>, Enum. Combin. Appl. 2 (2022), no. 4, Article #S4PP6.
%H A356185 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,1,-4,2).
%F A356185 a(n) = 2^(1+floor((n-1)/2))-n.
%F A356185 From _Alois P. Heinz_, Jul 28 2022: (Start)
%F A356185 G.f.: -(4*x^3-3*x^2-x+1)/((2*x^2-1)*(x-1)^2).
%F A356185 a(n) = A000325(n) - A233411(n) = A060546(n) - n = 2^ceiling(n/2) - n.
%F A356185 a(n) = A000325(n) - 2*A032085(n) = A000325(n) - 2*A122746(n-2) for n>=2. (End)
%e A356185 For n=3, 123, 231, 312 are even Grassmann permutations, and 132, 213 are the odd ones. Hence a(3) = 1.
%t A356185 Table[2^Floor[1 + (n - 1)/2] - n, {n, 1, 80}]
%Y A356185 Cf. A000325, A001710, A032085, A060546, A122746, A233411.
%Y A356185 Bisections give: A005803 (even part), A183155 (odd part).
%K A356185 nonn,easy
%O A356185 0,6
%A A356185 _Per W. Alexandersson_, Jul 28 2022