cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356191 a(n) is the smallest exponentially odd number that is divisible by n.

This page as a plain text file.
%I A356191 #14 Sep 09 2023 07:42:39
%S A356191 1,2,3,8,5,6,7,8,27,10,11,24,13,14,15,32,17,54,19,40,21,22,23,24,125,
%T A356191 26,27,56,29,30,31,32,33,34,35,216,37,38,39,40,41,42,43,88,135,46,47,
%U A356191 96,343,250,51,104,53,54,55,56,57,58,59,120,61,62,189,128,65
%N A356191 a(n) is the smallest exponentially odd number that is divisible by n.
%H A356191 Amiram Eldar, <a href="/A356191/b356191.txt">Table of n, a(n) for n = 1..10000</a>
%F A356191 Multiplicative with a(p^e) = p^e if e is odd and p^(e+1) otherwise.
%F A356191 a(n) = n iff n is in A268335.
%F A356191 a(n) = A064549(n)/A007913(n).
%F A356191 a(n) = n*A336643(n).
%F A356191 a(n) = n^2/A350390(n).
%F A356191 From _Vaclav Kotesovec_, Sep 09 2023: (Start)
%F A356191 Let f(s) = Product_{p prime} (1 - p^(6-5*s) + p^(7-5*s) + 2*p^(5-4*s) - p^(6-4*s) + p^(3-3*s) - p^(4-3*s) - 2*p^(2-2*s)).
%F A356191 Sum_{k=1..n} a(k) ~ Pi^2 * f(2) * n^2 / 24 * (log(n) + 3*gamma - 1/2 + 12*zeta'(2)/Pi^2 + f'(2)/f(2)), where
%F A356191 f(2) = Product_{p prime} (1 - 4/p^2 + 4/p^3 - 1/p^4) = A256392 = 0.2177787166195363783230075141194468131307977550013559376482764035236264911...,
%F A356191 f'(2) = f(2) * Sum_{p prime} (11*p - 5) * log(p) / (p^3 + p^2 - 3*p + 1) = f(1) * 4.7165968208567630786609552448708126340725121316268495170070986645608062483...
%F A356191 and gamma is the Euler-Mascheroni constant A001620. (End)
%t A356191 f[p_, e_] := If[OddQ[e], p^e, p^(e + 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A356191 (PARI) a(n) = {my(f=factor(n)); prod(i=1, #f~, if(f[i,2]%2, f[i,1]^f[i,2], f[i,1]^(f[i,2]+1)))};
%o A356191 (PARI) for(n=1, 100, print1(direuler(p=2, n, 1/(1 - p^2*X^2) * (1 + p*X + p^3*X^2 - p^2*X^2))[n], ", ")) \\ _Vaclav Kotesovec_, Sep 09 2023
%Y A356191 Cf. A064549, A007913, A268335, A336643, A350390.
%Y A356191 Similar sequences: A053149, A053143, A053167, A066638, A087320, A087321, A197863, A356192, A356193, A356194.
%K A356191 nonn,easy,mult
%O A356191 1,2
%A A356191 _Amiram Eldar_, Jul 29 2022