cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356192 a(n) is the smallest cubefull exponentially odd number (A335988) that is divisible by n.

This page as a plain text file.
%I A356192 #17 Nov 13 2022 08:40:51
%S A356192 1,8,27,8,125,216,343,8,27,1000,1331,216,2197,2744,3375,32,4913,216,
%T A356192 6859,1000,9261,10648,12167,216,125,17576,27,2744,24389,27000,29791,
%U A356192 32,35937,39304,42875,216,50653,54872,59319,1000,68921,74088,79507,10648,3375,97336
%N A356192 a(n) is the smallest cubefull exponentially odd number (A335988) that is divisible by n.
%C A356192 First differs from A053149 and A356193 at n=16.
%H A356192 Amiram Eldar, <a href="/A356192/b356192.txt">Table of n, a(n) for n = 1..10000</a>
%F A356192 Multiplicative with a(p^e) = p^max(e,3) if e is odd and p^(e+1) otherwise.
%F A356192 a(n) = n iff n is in A335988.
%F A356192 a(n) = A356191(n) iff n is a powerful number (A001694).
%F A356192 Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + (3*p^2-1)/(p^3*(p^2-1))) = 1.69824776889117043774... .
%F A356192 Sum_{k=1..n} a(k) ~ c * n^4, where c = (zeta(6)/4) * Product_{p prime} (1 - 1/p^2 + 1/p^5 - 2/p^6 + 1/p^8 + 1/p^9 - 1/p^10) = 0.1559368144... . - _Amiram Eldar_, Nov 13 2022
%t A356192 f[p_, e_] := If[OddQ[e], p^Max[e, 3], p^(e + 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50]
%o A356192 (PARI) a(n) = {my(f=factor(n)); prod(i=1, #f~, if(f[i,2]%2, f[i,1]^max(f[i,2],3), f[i,1]^(f[i,2]+1)))};
%Y A356192 Cf. A001694, A013664, A268335, A335988.
%Y A356192 Similar sequences: A053149, A053143, A053167, A066638, A087320, A087321, A197863, A356191, A356193, A356194.
%K A356192 nonn,easy,mult
%O A356192 1,2
%A A356192 _Amiram Eldar_, Jul 29 2022