This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356196 #52 Nov 14 2022 00:37:39 %S A356196 2,3,5,13,17,19,23,29,31,37,41,43,59,61,67,73,79,83,89,103,107,137, %T A356196 157,167,173,193,239,241,251,257,263,269,281,283,359,389,397,401,419, %U A356196 421,457,461,463,467,487,523,601,613,617,619,641,643,683 %N A356196 Consider pairs of consecutive primes {p,q} such that p, q, q-p and q+p all with distinct digits. Sequence gives lesser primes p. %C A356196 This sequence has 1843 terms, the last being 927368041. %H A356196 Michael S. Branicky, <a href="/A356196/b356196.txt">Table of n, a(n) for n = 1..1843</a> %e A356196 For last term: p = 927368041, q = 927368051, q-p = 10, q+p = 1854736092. %o A356196 (Python) %o A356196 from sympy import isprime, nextprime %o A356196 from itertools import combinations, permutations %o A356196 def distinct(n): s = str(n); return len(s) == len(set(s)) %o A356196 def afull(): %o A356196 for d in range(1, 10): %o A356196 s = set() %o A356196 for p in permutations("0123456789", d): %o A356196 if p[0] == "0": continue %o A356196 p = int("".join(p)) %o A356196 if not isprime(p): continue %o A356196 q = nextprime(p) %o A356196 if not all(distinct(t) for t in [q, q-p, q+p]): continue %o A356196 s.add(p) %o A356196 yield from sorted(s) %o A356196 print(list(afull())) # _Michael S. Branicky_, Nov 01 2022 %Y A356196 Subsequence of A029743 (primes with distinct digits). %K A356196 nonn,base,fini,full %O A356196 1,1 %A A356196 _Zak Seidov_, Oct 31 2022