cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356216 Decimal expansion of the real part of the first nontrivial zero of zeta'.

This page as a plain text file.
%I A356216 #89 Sep 23 2022 17:19:18
%S A356216 2,4,6,3,1,6,1,8,6,9,4,5,4,3,2,1,2,8,5,8,7,4,3,9,5,0,5,3,3,0,6,3,2,9,
%T A356216 1,4,4,9,2,0,7,9,3,1,3,4,5,6,7,3,2,3,4,7,5,0,2,2,2,1,7,3,7,0,7,2,7,1,
%U A356216 1,7,5,0,8,6,7,1,0,2,6,3,7,1,1,9,4,8,2,4,6,8,6,1,3,2,8,3,5,5,4,2,6,7,0,5,4,1,5,5,1,0,4,1,7,8,8,8,6,1,9,2,3,5,0,7,4,0,4
%N A356216 Decimal expansion of the real part of the first nontrivial zero of zeta'.
%C A356216 The nontrivial zero of zeta' with the smallest imaginary part is 2.4631618694543212... + i*23.2983204927628579...
%C A356216 The Riemann Hypothesis is equivalent to the assertion that zeta' (the derivative of the Riemann zeta function) has no nontrivial zero in the half-plane Re(z) < 1/2 (there are trivial zeros, e.g., -2.717262829204574...).
%H A356216 Norman Levinson and Hugh L. Montgomery, <a href="https://doi.org/10.1007/BF02392141">Zeros of the derivatives of the Riemann zeta-function</a>, Acta Mathematica, Vol. 133 (1974), pp. 49-65; <a href="http://archive.ymsc.tsinghua.edu.cn/pacm_download/117/6174-11511_2006_Article_BF02392141.pdf">alternative link</a>.
%e A356216 2.463161869454321285874395053306329144920793134567323475022217370727117508671...
%t A356216 RealDigits[Re[x /. FindRoot[Derivative[1][Zeta][x], {x, 2 + 23*I}, WorkingPrecision -> 100]]][[1]] (* _Amiram Eldar_, Aug 14 2022 *)
%Y A356216 Cf. A356092.
%K A356216 nonn,cons
%O A356216 1,1
%A A356216 _Benoit Cloitre_, Aug 13 2022