cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356220 a(n) = A108598(A001950(n)).

This page as a plain text file.
%I A356220 #17 Mar 23 2025 18:39:43
%S A356220 3,9,12,18,23,27,32,36,41,47,50,56,61,65,70,74,79,85,88,94,97,103,108,
%T A356220 112,117,123,126,132,135,141,146,150,155,161,164,170,173,179,184,188,
%U A356220 193,197,202,208,211,217,222,226,231,235,240,246,249,255,258,264
%N A356220 a(n) = A108598(A001950(n)).
%C A356220 This is the fourth of four sequences that partition the positive integers. See A356217.
%e A356220 (1)  v o u = (2, 6, 8, 13, 17, 20, 24, 26, 31, 35, 38, 42, ...) = A356217
%e A356220 (2)  v' o u = (1, 5, 7, 10, 14, 16, 19, 21, 25, 28, 30, 34, ...) = A356218
%e A356220 (3)  v o u' = (4, 11, 15, 22, 29, 33, 40, 44, 51, 58, 62, 76, ...) = A190509
%e A356220 (4)  v' o u' = (3, 9, 12, 18, 23, 27, 32, 36, 41, 47, 50, 56, ...) = A356220
%t A356220 z = 1000;
%t A356220 u = Table[Floor[n*(1 + Sqrt[5])/2], {n, 1, z}];  (* A000201 *)
%t A356220 u1 = Complement[Range[Max[u]], u];  (* A001950 *)
%t A356220 v = Table[Floor[n*Sqrt[5]], {n, 1, z}];  (* A022839 *)
%t A356220 v1 = Complement[Range[Max[v]], v];  (* A108598 *)
%t A356220 zz = 120;
%t A356220 Table[v[[u[[n]]]], {n, 1, z/4}]   (* A356217 *)
%t A356220 Table[v1[[u[[n]]]], {n, 1, z/4}]  (* A356218 *)
%t A356220 Table[v[[u1[[n]]]], {n, 1, z/4}]  (* A190509 *)
%t A356220 Table[v1[[u1[[n]]]], {n, 1, z/4}] (* A356220 *)
%Y A356220 Cf. A000201, A001950, A022839, A108598, A351415 (intersections), A356104 (reverse composites), A356217, A356218, A356219.
%K A356220 nonn,easy
%O A356220 1,1
%A A356220 _Clark Kimberling_, Nov 13 2022