This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356222 #9 Aug 08 2022 15:54:58 %S A356222 2,4,3,9,6,5,24,11,8,7,34,72,15,12,10,46,42,77,16,14,13,30,47,53,79, %T A356222 18,19,17,282,62,91,61,87,21,22,20,99,295,66,97,68,92,23,25,26,154, %U A356222 180,319,137,114,80,94,32,27,28,189,259,205,331,146,121,82,124,36,29,33 %N A356222 Array read by antidiagonals upwards where A(n,k) is the position of the k-th appearance of 2n in the sequence of prime gaps A001223. If A001223 does not contain 2n at least k times, set A(n,k) = -1. %C A356222 Prime gaps (A001223) are the differences between consecutive prime numbers. They begin: 1, 2, 2, 4, 2, 4, 2, 4, 6, ... %C A356222 This is a permutation of the positive integers > 1. %e A356222 Array begins: %e A356222 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 %e A356222 n=1: 2 3 5 7 10 13 17 20 26 %e A356222 n=2: 4 6 8 12 14 19 22 25 27 %e A356222 n=3: 9 11 15 16 18 21 23 32 36 %e A356222 n=4: 24 72 77 79 87 92 94 124 126 %e A356222 n=5: 34 42 53 61 68 80 82 101 106 %e A356222 n=6: 46 47 91 97 114 121 139 168 197 %e A356222 n=7: 30 62 66 137 146 150 162 223 250 %e A356222 n=8: 282 295 319 331 335 378 409 445 476 %e A356222 n=9: 99 180 205 221 274 293 326 368 416 %e A356222 For example, the positions in A001223 of appearances of 2*3 begin: 9, 11, 15, 16, 18, 21, 23, ..., which is row n = 3 (A320701). %t A356222 gapa=Differences[Array[Prime,10000]]; %t A356222 Table[Position[gapa,2*(k-n+1)][[n,1]],{k,6},{n,k}] %Y A356222 The row containing n is A028334(n). %Y A356222 Row n = 1 is A029707. %Y A356222 Row n = 2 is A029709. %Y A356222 Column k = 1 is A038664. %Y A356222 The column containing n is A274121(n). %Y A356222 Column k = 2 is A356221. %Y A356222 The diagonal A(n,n) is A356223. %Y A356222 A001223 lists the prime gaps. %Y A356222 A073491 lists numbers with gapless prime indices. %Y A356222 A356224 counts even divisors with gapless prime indices, complement A356225. %Y A356222 Cf. A066205, A119313, A193829, A287170, A328457, A356226, A356232. %K A356222 nonn,tabl %O A356222 1,1 %A A356222 _Gus Wiseman_, Aug 04 2022