cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356226 Irregular triangle giving the lengths of maximal gapless submultisets of the prime indices of n.

This page as a plain text file.
%I A356226 #11 Aug 13 2022 22:24:56
%S A356226 1,1,2,1,2,1,3,2,1,1,1,3,1,1,1,2,4,1,3,1,2,1,1,1,1,1,1,4,2,1,1,3,2,1,
%T A356226 1,3,1,5,1,1,1,1,2,4,1,1,1,1,1,3,1,1,2,1,1,2,1,3,1,1,1,5,2,1,2,1,1,2,
%U A356226 1,1,4,1,1,3,1,1,1,1,1,1,4,1,1,1,2,1,6
%N A356226 Irregular triangle giving the lengths of maximal gapless submultisets of the prime indices of n.
%C A356226 A sequence is gapless if it covers an unbroken interval of positive integers. For example, the multiset {2,3,5,5,6,9} has three maximal gapless submultisets: {2,3}, {5,5,6}, {9}.
%C A356226 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%e A356226 Triangle  begins: {}, {1}, {1}, {2}, {1}, {2}, {1}, {3}, {2}, {1,1}, {1}, {3}, {1}, {1,1}, {2}, {4}, {1}, {3}, {1}, {2,1}, ... For example, the prime indices of 20 are {1,1,3}, which separates into maximal gapless submultisets {{1,1},{3}}, so row 20 is (2,1).
%e A356226 The prime indices of 18564 are {1,1,2,4,6,7}, which separates into {1,1,2}, {4}, {6,7}, so row 18564 is (3,1,2). This corresponds to the factorization 18564 = 12 * 7 * 221.
%t A356226 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A356226 Table[Length/@Split[primeMS[n],#1>=#2-1&],{n,100}]
%Y A356226 Row sums are A001222.
%Y A356226 Singleton row positions are A073491, complement A073492.
%Y A356226 Length-2,3,4 row positions are A073493-A073495.
%Y A356226 Row lengths are A287170, firsts A066205.
%Y A356226 Row minima are A356227.
%Y A356226 Row maxima are A356228.
%Y A356226 Bisected run-lengths are A356229.
%Y A356226 Standard composition numbers of rows are A356230.
%Y A356226 Heinz numbers of rows are A356231.
%Y A356226 Positions of first appearances are A356232.
%Y A356226 A001221 counts distinct prime factors, with sum A001414.
%Y A356226 A001223 lists the prime gaps, reduced A028334.
%Y A356226 A003963 multiplies together the prime indices of n.
%Y A356226 A056239 adds up prime indices, row sums of A112798.
%Y A356226 A132747 counts non-isolated divisors, complement A132881.
%Y A356226 A356069 counts gapless divisors, initial A356224 (complement A356225).
%Y A356226 Cf. A000005, A055874, A060680-A060683, A137921, A193829, A286470, A328166.
%K A356226 nonn,tabf
%O A356226 1,3
%A A356226 _Gus Wiseman_, Aug 10 2022