This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356227 #8 Aug 13 2022 22:24:52 %S A356227 0,1,1,2,1,2,1,3,2,1,1,3,1,1,2,4,1,3,1,1,1,1,1,4,2,1,3,1,1,3,1,5,1,1, %T A356227 2,4,1,1,1,1,1,1,1,1,3,1,1,5,2,1,1,1,1,4,1,1,1,1,1,4,1,1,1,6,1,1,1,1, %U A356227 1,1,1,5,1,1,3,1,2,1,1,1,4,1,1,1,1,1,1 %N A356227 Smallest size of a maximal gapless submultiset of the prime indices of n. %C A356227 A sequence is gapless if it covers an unbroken interval of positive integers. For example, the multiset {2,3,5,5,6,9} has three maximal gapless submultisets: {2,3}, {5,5,6}, {9}. %C A356227 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %F A356227 a(n) = A333768(A356230(n)). %F A356227 a(n) = A055396(A356231(n)). %e A356227 The prime indices of 18564 are {1,1,2,4,6,7}, with maximal gapless submultisets {1,1,2}, {4}, {6,7}, so a(18564) = 1. %t A356227 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A356227 Table[If[n==1,0,Min@@Length/@Split[primeMS[n],#1>=#2-1&]],{n,100}] %Y A356227 Positions of first appearances are A000079. %Y A356227 The maximal gapless submultisets are counted by A287170, firsts A066205. %Y A356227 These are the row-minima of A356226, firsts A356232. %Y A356227 The greatest instead of smallest size is A356228. %Y A356227 A001221 counts distinct prime factors, with sum A001414. %Y A356227 A001222 counts prime factors with multiplicity. %Y A356227 A001223 lists the prime gaps, reduced A028334. %Y A356227 A003963 multiplies together the prime indices of n. %Y A356227 A056239 adds up prime indices, row sums of A112798. %Y A356227 A073491 lists numbers with gapless prime indices, cf. A073492-A073495. %Y A356227 A356224 counts even gapless divisors, complement A356225. %Y A356227 Cf. A000005, A055874, A060680-A060683, A132747, A132881, A137921, A193829, A286470, A356229. %K A356227 nonn %O A356227 1,4 %A A356227 _Gus Wiseman_, Aug 13 2022