cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356229 Number of maximal gapless submultisets of the prime indices of 2n.

This page as a plain text file.
%I A356229 #12 Jan 19 2025 09:26:33
%S A356229 1,1,1,1,2,1,2,1,1,2,2,1,2,2,1,1,2,1,2,2,2,2,2,1,2,2,1,2,2,1,2,1,2,2,
%T A356229 2,1,2,2,2,2,2,2,2,2,1,2,2,1,2,2,2,2,2,1,3,2,2,2,2,1,2,2,2,1,3,2,2,2,
%U A356229 2,2,2,1,2,2,1,2,2,2,2,2,1,2,2,2,3,2,2,2,2,1,3,2,2,2,3,1,2,2,2,2,2,2,2,2,1
%N A356229 Number of maximal gapless submultisets of the prime indices of 2n.
%C A356229 A sequence is gapless if it covers an unbroken interval of positive integers. For example, the multiset {2,3,5,5,6,9} has three maximal gapless submultisets: {2,3}, {5,5,6}, {9}.
%C A356229 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A356229 This is a bisection of A287170, but is important in its own right because the even numbers are exactly those whose prime indices begin with 1.
%H A356229 Antti Karttunen, <a href="/A356229/b356229.txt">Table of n, a(n) for n = 1..100000</a>
%F A356229 a(n) = A287170(2n).
%e A356229 The prime indices of 2*9282 are {1,1,2,4,6,7}, with maximal gapless submultisets {1,1,2}, {4}, {6,7}, so a(9282) = 3.
%t A356229 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A356229 Table[Length[Split[primeMS[2n],#1>=#2-1&]],{n,100}]
%o A356229 (PARI)
%o A356229 A287170(n) = { my(f=factor(n)); if(#f~==0, return (0), return(#f~ - sum(i=1, #f~-1, if (primepi(f[i, 1])+1 == primepi(f[i+1, 1]), 1, 0)))); };
%o A356229 A356229(n) = A287170(2*n); \\ _Antti Karttunen_, Jan 19 2025
%Y A356229 This is the even (bisected) case of A287170, firsts A066205.
%Y A356229 Alternate row-lengths of A356226, minima A356227(2n), maxima A356228(2n).
%Y A356229 A001221 counts distinct prime factors, sum A001414.
%Y A356229 A001222 counts prime indices, listed by A112798, sum A056239.
%Y A356229 A003963 multiplies together the prime indices of n.
%Y A356229 A073093 counts the prime indices of 2n.
%Y A356229 A073491 lists numbers with gapless prime indices, cf. A073492-A073495.
%Y A356229 Cf. A000005, A060680, A060681, A132747, A132881, A286470, A289509, A356230, A356231, A356232.
%K A356229 nonn
%O A356229 1,5
%A A356229 _Gus Wiseman_, Aug 16 2022
%E A356229 Data section extended to a(105) by _Antti Karttunen_, Jan 19 2025