This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356232 #8 Aug 27 2022 21:30:27 %S A356232 1,2,4,8,10,16,20,32,40,50,64,80,100,110,128,160,200,220,250,256,320, %T A356232 400,440,500,512,550,640,800,880,1000,1024,1100,1210,1250,1280,1600, %U A356232 1760,1870,2000,2048,2200,2420,2500,2560,2750,3200,3520,3740,4000,4096,4400 %N A356232 Numbers whose prime indices are all odd and cover an initial interval of odd positive integers. %C A356232 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A356232 Also positions of first appearances of rows in A356226. %e A356232 The terms together with their prime indices begin: %e A356232 1: {} %e A356232 2: {1} %e A356232 4: {1,1} %e A356232 8: {1,1,1} %e A356232 10: {1,3} %e A356232 16: {1,1,1,1} %e A356232 20: {1,1,3} %e A356232 32: {1,1,1,1,1} %e A356232 40: {1,1,1,3} %e A356232 50: {1,3,3} %e A356232 64: {1,1,1,1,1,1} %e A356232 80: {1,1,1,1,3} %e A356232 100: {1,1,3,3} %e A356232 110: {1,3,5} %e A356232 128: {1,1,1,1,1,1,1} %e A356232 160: {1,1,1,1,1,3} %e A356232 200: {1,1,1,3,3} %e A356232 220: {1,1,3,5} %e A356232 250: {1,3,3,3} %e A356232 256: {1,1,1,1,1,1,1,1} %e A356232 320: {1,1,1,1,1,1,3} %e A356232 400: {1,1,1,1,3,3} %t A356232 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A356232 normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]]; %t A356232 Select[Range[1000],normQ[(primeMS[#]+1)/2]&] %Y A356232 The partitions with these Heinz numbers are counted by A053251. %Y A356232 This is the odd restriction of A055932. %Y A356232 A subset of A066208 (numbers with all odd prime indices). %Y A356232 This is the sorted version of A356603. %Y A356232 These are the positions of first appearances of rows in A356226. Other statistics are: %Y A356232 - length: A287170, firsts A066205 %Y A356232 - minimum: A356227 %Y A356232 - maximum: A356228 %Y A356232 - bisected length: A356229 %Y A356232 - standard composition: A356230 %Y A356232 - Heinz number: A356231 %Y A356232 - positions of first appearances: A356232 (this sequence) %Y A356232 A001221 counts distinct prime factors, with sum A001414. %Y A356232 A001223 lists the prime gaps, reduced A028334. %Y A356232 A003963 multiplies together the prime indices. %Y A356232 A056239 adds up the prime indices, row sums of A112798. %Y A356232 A073491 lists numbers with gapless prime indices, complement A073492. %Y A356232 Cf. A000005, A001222, A061395, A073493, A132747, A137921, A193829, A286470, A356224, A356237. %K A356232 nonn %O A356232 1,2 %A A356232 _Gus Wiseman_, Aug 20 2022