This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356234 #5 Aug 30 2022 09:41:31 %S A356234 2,3,4,5,6,7,8,9,2,5,11,12,13,2,7,15,16,17,18,19,4,5,3,7,2,11,23,24, %T A356234 25,2,13,27,4,7,29,30,31,32,3,11,2,17,35,36,37,2,19,3,13,8,5,41,6,7, %U A356234 43,4,11,45,2,23,47,48,49,2,25,3,17,4,13,53,54,5,11,8 %N A356234 Irregular triangle read by rows where row n is the ordered factorization of n into maximal gapless divisors. %C A356234 Row-products are the positive integers 1, 2, 3, ... %e A356234 The first 16 rows: %e A356234 1 = %e A356234 2 = 2 %e A356234 3 = 3 %e A356234 4 = 4 %e A356234 5 = 5 %e A356234 6 = 6 %e A356234 7 = 7 %e A356234 8 = 8 %e A356234 9 = 9 %e A356234 10 = 2 * 5 %e A356234 11 = 11 %e A356234 12 = 12 %e A356234 13 = 13 %e A356234 14 = 2 * 7 %e A356234 15 = 15 %e A356234 16 = 16 %e A356234 The factorization of 18564 is 18564 = 12*7*221, so row 18564 is {12,7,221}. %t A356234 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A356234 Table[Times@@Prime/@#&/@Split[primeMS[n],#1>=#2-1&],{n,100}] %Y A356234 Row-lengths are A287170, firsts A066205, even bisection A356229. %Y A356234 Applying bigomega to all parts gives A356226, statistics A356227-A356232. %Y A356234 A001055 counts factorizations. %Y A356234 A001221 counts distinct prime factors, sum A001414. %Y A356234 A003963 multiplies together the prime indices. %Y A356234 A056239 adds up the prime indices, row sums of A112798. %Y A356234 A132747 counts non-isolated divisors, complement A132881. %Y A356234 A356069 counts gapless divisors, initial A356224 (complement A356225). %Y A356234 Cf. A000005, A001222, A060680-A060683, A073491-A073495, A193829, A330103, A356233-A356237. %K A356234 nonn,tabf %O A356234 1,1 %A A356234 _Gus Wiseman_, Aug 28 2022