cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356235 Number of integer partitions of n with a neighborless singleton.

This page as a plain text file.
%I A356235 #7 Aug 25 2022 08:33:36
%S A356235 0,1,1,1,2,3,5,8,12,16,25,33,45,62,84,109,148,192,251,325,421,536,690,
%T A356235 870,1100,1385,1739,2161,2697,3334,4121,5071,6228,7609,9303,11308,
%U A356235 13732,16629,20101,24206,29140,34957,41882,50060,59745,71124,84598,100365
%N A356235 Number of integer partitions of n with a neighborless singleton.
%C A356235 A part x is neighborless if neither x - 1 nor x + 1 are parts, and a singleton if it appears only once. Examples of partitions with a neighborless singleton are: (3), (3,1), (3,1,1), (3,3,1). Examples of partitions without a neighborless singleton are: (3,3,1,1), (4,3,1,1), (3,2,1), (2,1), (3,3).
%e A356235 The a(1) = 1 through a(8) = 12 partitions:
%e A356235   (1)  (2)  (3)  (4)   (5)    (6)     (7)      (8)
%e A356235                  (31)  (41)   (42)    (52)     (53)
%e A356235                        (311)  (51)    (61)     (62)
%e A356235                               (411)   (331)    (71)
%e A356235                               (3111)  (421)    (422)
%e A356235                                       (511)    (431)
%e A356235                                       (4111)   (521)
%e A356235                                       (31111)  (611)
%e A356235                                                (4211)
%e A356235                                                (5111)
%e A356235                                                (41111)
%e A356235                                                (311111)
%t A356235 Table[Length[Select[IntegerPartitions[n],Min@@Length/@Split[Reverse[#],#1>=#2-1&]==1&]],{n,0,30}]
%Y A356235 The complement is counted by A355393.
%Y A356235 This is the singleton case of A356236, complement A355394.
%Y A356235 These partitions are ranked by A356237.
%Y A356235 The strict case is A356607, complement A356606.
%Y A356235 A000041 counts integer partitions, strict A000009.
%Y A356235 A000837 counts relatively prime partitions, ranked by A289509.
%Y A356235 A007690 counts partitions with no singletons, complement A183558.
%Y A356235 Cf. A066205, A325160, A328171, A328172, A328187, A328221, A356233.
%K A356235 nonn
%O A356235 0,5
%A A356235 _Gus Wiseman_, Aug 23 2022