This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356236 #11 Feb 17 2024 14:08:09 %S A356236 0,1,2,2,4,4,8,9,16,20,31,40,59,76,105,138,184,238,311,400,515,656, %T A356236 831,1052,1322,1659,2064,2572,3182,3934,4837,5942,7264,8872,10789, %U A356236 13109,15865,19174,23105,27796,33361,39956,47766,56985,67871,80675,95750,113416 %N A356236 Number of integer partitions of n with a neighborless part. %C A356236 A part x of a partition is neighborless if neither x - 1 nor x + 1 are parts. %F A356236 a(n) = A000041(n) - A355394(n). %e A356236 The a(1) = 1 through a(8) = 9 partitions: %e A356236 (1) (2) (3) (4) (5) (6) (7) %e A356236 (11) (111) (22) (41) (33) (52) %e A356236 (31) (311) (42) (61) %e A356236 (1111) (11111) (51) (331) %e A356236 (222) (421) %e A356236 (411) (511) %e A356236 (3111) (4111) %e A356236 (111111) (31111) %e A356236 (1111111) %t A356236 Table[Length[Select[IntegerPartitions[n],Function[ptn,Or@@Table[!MemberQ[ptn,x-1]&&!MemberQ[ptn,x+1],{x,Union[ptn]}]]]],{n,0,30}] %Y A356236 The complement is counted by A355394, singleton case A355393. %Y A356236 The singleton case is A356235, ranked by A356237. %Y A356236 The strict case is A356607, complement A356606. %Y A356236 These partitions are ranked by the complement of A356736. %Y A356236 A000041 counts integer partitions, strict A000009. %Y A356236 A000837 counts relatively prime partitions, ranked by A289509. %Y A356236 A007690 counts partitions with no singletons, complement A183558. %Y A356236 Cf. A066205, A112798, A319630, A325160, A328171, A328172, A328187, A328221. %K A356236 nonn %O A356236 0,3 %A A356236 _Gus Wiseman_, Aug 24 2022