This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356237 #11 Aug 26 2022 23:40:50 %S A356237 2,3,5,7,10,11,13,14,17,19,20,21,22,23,26,28,29,31,33,34,37,38,39,40, %T A356237 41,42,43,44,46,47,50,51,52,53,55,56,57,58,59,61,62,63,65,66,67,68,69, %U A356237 70,71,73,74,76,78,79,80,82,83,84,85,86,87,88,89,91,92,93 %N A356237 Heinz numbers of integer partitions with a neighborless singleton. %C A356237 A part x is neighborless if neither x - 1 nor x + 1 are parts, and a singleton if it appears only once. %C A356237 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %C A356237 Also numbers that, for some prime index x, are not divisible by prime(x)^2, prime(x - 1), or prime(x + 1). Here, a prime index of n is a number m such that prime(m) divides n. %e A356237 The terms together with their prime indices begin: %e A356237 2: {1} %e A356237 3: {2} %e A356237 5: {3} %e A356237 7: {4} %e A356237 10: {1,3} %e A356237 11: {5} %e A356237 13: {6} %e A356237 14: {1,4} %e A356237 17: {7} %e A356237 19: {8} %e A356237 20: {1,1,3} %e A356237 21: {2,4} %e A356237 22: {1,5} %e A356237 23: {9} %e A356237 26: {1,6} %e A356237 28: {1,1,4} %t A356237 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A356237 Select[Range[100],Function[ptn,Or@@Table[Count[ptn,x]==1&&!MemberQ[ptn,x-1]&&!MemberQ[ptn,x+1],{x,Union[ptn]}]]@*primeMS] %Y A356237 The complement is counted by A355393. %Y A356237 These partitions are counted by A356235. %Y A356237 Not requiring a singleton gives A356734. %Y A356237 A001221 counts distinct prime factors, with sum A001414. %Y A356237 A003963 multiplies together the prime indices of n. %Y A356237 A007690 counts partitions with no singletons, complement A183558. %Y A356237 A056239 adds up prime indices, row sums of A112798, lengths A001222. %Y A356237 A073491 lists numbers with gapless prime indices, complement A073492. %Y A356237 A132747 counts non-isolated divisors, complement A132881. %Y A356237 A356069 counts gapless divisors, initial A356224 (complement A356225). %Y A356237 A356236 counts partitions with a neighborless part, complement A355394. %Y A356237 A356607 counts strict partitions w/ a neighborless part, complement A356606. %Y A356237 Cf. A286470, A289508, A325160, A328166, A328335, A356231, A356233, A356234. %K A356237 nonn %O A356237 1,1 %A A356237 _Gus Wiseman_, Aug 24 2022