This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356241 #12 Feb 16 2025 08:34:03 %S A356241 0,0,1,0,1,1,0,0,1,1,0,1,0,0,2,0,1,1,0,1,1,0,0,1,1,0,1,0,0,2,0,0,1,1, %T A356241 1,1,0,0,1,1,0,1,0,0,2,0,0,1,0,1,2,0,0,1,1,0,1,0,0,2,0,0,1,0,1,1,0,1, %U A356241 1,1,0,1,0,0,2,0,0,1,0,1,1,0,0,1,2,0,1 %N A356241 a(n) is the number of distinct Fermat numbers dividing n. %C A356241 A051179(n) is the least number k such that a(k) = n. %C A356241 The asymptotic density of occurrences of 0 is 1/2. %C A356241 The asymptotic density of occurrences of 1 is (1/2) * Sum_{k>=0} 1/2^(2^k) = (1/2) * A007404 = 0.4082107545... . %H A356241 Amiram Eldar, <a href="/A356241/b356241.txt">Table of n, a(n) for n = 1..10000</a> %H A356241 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FermatNumber.html">Fermat Number</a>. %H A356241 Wikipedia, <a href="http://en.wikipedia.org/wiki/Fermat_number">Fermat number</a>. %F A356241 a(A000215(n)) = 1. %F A356241 a(A051179(n)) = n. %F A356241 a(A003593(n)) = A112753(n). %F A356241 a(n) <= A356242(n). %F A356241 a(A080307(n)) > 0 and a(A080308(n)) = 0. %F A356241 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=0} 1/(2^(2^k)+1) = 0.5960631721... (A051158). %t A356241 f = Table[(2^(2^n) + 1), {n, 0, 5}]; a[n_] := Count[f, _?(Divisible[n, #] &)]; Array[a, 100] %Y A356241 Cf. A000215, A007404, A051158, A051179, A356242. %Y A356241 Cf. A080307 (positions of nonzeros), A080308 (positions of 0's). %K A356241 nonn %O A356241 1,15 %A A356241 _Amiram Eldar_, Jul 30 2022