cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356241 a(n) is the number of distinct Fermat numbers dividing n.

This page as a plain text file.
%I A356241 #12 Feb 16 2025 08:34:03
%S A356241 0,0,1,0,1,1,0,0,1,1,0,1,0,0,2,0,1,1,0,1,1,0,0,1,1,0,1,0,0,2,0,0,1,1,
%T A356241 1,1,0,0,1,1,0,1,0,0,2,0,0,1,0,1,2,0,0,1,1,0,1,0,0,2,0,0,1,0,1,1,0,1,
%U A356241 1,1,0,1,0,0,2,0,0,1,0,1,1,0,0,1,2,0,1
%N A356241 a(n) is the number of distinct Fermat numbers dividing n.
%C A356241 A051179(n) is the least number k such that a(k) = n.
%C A356241 The asymptotic density of occurrences of 0 is 1/2.
%C A356241 The asymptotic density of occurrences of 1 is (1/2) * Sum_{k>=0} 1/2^(2^k) = (1/2) * A007404 = 0.4082107545... .
%H A356241 Amiram Eldar, <a href="/A356241/b356241.txt">Table of n, a(n) for n = 1..10000</a>
%H A356241 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FermatNumber.html">Fermat Number</a>.
%H A356241 Wikipedia, <a href="http://en.wikipedia.org/wiki/Fermat_number">Fermat number</a>.
%F A356241 a(A000215(n)) = 1.
%F A356241 a(A051179(n)) = n.
%F A356241 a(A003593(n)) = A112753(n).
%F A356241 a(n) <= A356242(n).
%F A356241 a(A080307(n)) > 0 and a(A080308(n)) = 0.
%F A356241 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=0} 1/(2^(2^k)+1) = 0.5960631721... (A051158).
%t A356241 f = Table[(2^(2^n) + 1), {n, 0, 5}]; a[n_] := Count[f, _?(Divisible[n, #] &)]; Array[a, 100]
%Y A356241 Cf. A000215, A007404, A051158, A051179, A356242.
%Y A356241 Cf. A080307 (positions of nonzeros), A080308 (positions of 0's).
%K A356241 nonn
%O A356241 1,15
%A A356241 _Amiram Eldar_, Jul 30 2022