This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356243 #16 Oct 21 2023 19:38:55 %S A356243 1,9,49,447,4607,71009,1210855,24980627,575624572,14958422046, %T A356243 427890493960,13431874937840,457651929853662,16844143705998554, %U A356243 665499756005678382,28102799297908820326,1262909308355648335240,60183118566605371095996 %N A356243 a(n) = Sum_{k=1..n} k^2 * sigma_{n-2}(k). %F A356243 a(n) = Sum_{k=1..n} k^n * Sum_{j=1..floor(n/k)} j^2 = Sum_{k=1..n} k^n * A000330(floor(n/k)). %F A356243 a(n) = [x^n] (1/(1-x)) * Sum_{k>=1} k^n * x^k * (1 + x^k)/(1 - x^k)^3. %t A356243 a[n_] := Sum[k^2 * DivisorSigma[n - 2, k], {k, 1, n}]; Array[a, 18] (* _Amiram Eldar_, Jul 30 2022 *) %o A356243 (PARI) a(n) = sum(k=1, n, k^2*sigma(k, n-2)); %o A356243 (PARI) a(n) = sum(k=1, n, k^n*sum(j=1, n\k, j^2)); %o A356243 (Python) %o A356243 from math import isqrt %o A356243 from sympy import bernoulli %o A356243 def A356243(n): return (((s:=isqrt(n))*(s+1)*(2*s+1))*((b:=bernoulli(n+1))-bernoulli(n+1, s+1)) + sum(k**n*(n+1)*((q:=n//k)*(q+1)*(2*q+1))+6*k**2*(bernoulli(n+1,q+1)-b) for k in range(1,s+1)))//(n+1)//6 # _Chai Wah Wu_, Oct 21 2023 %Y A356243 Cf. A000330, A319194, A356129, A356239. %K A356243 nonn %O A356243 1,2 %A A356243 _Seiichi Manyama_, Jul 30 2022