cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356251 a(n) = n*(n+1)*(n+2)*(n+3)*(2*n+1)/12.

Original entry on oeis.org

0, 6, 50, 210, 630, 1540, 3276, 6300, 11220, 18810, 30030, 46046, 68250, 98280, 138040, 189720, 255816, 339150, 442890, 570570, 726110, 913836, 1138500, 1405300, 1719900, 2088450, 2517606, 3014550, 3587010, 4243280, 4992240, 5843376, 6806800, 7893270, 9114210
Offset: 0

Views

Author

Edward Krogius, Jul 31 2022

Keywords

Comments

Sum of all numbers squared in ordered triples (x,y,z) where 0 <= x <= y <= z <= n.

Examples

			a(1) = 6 because we have the triples (0,0,0), (0,0,1), (0,1,1), (1,1,1).
		

Crossrefs

Cf. A033487.

Programs

  • Mathematica
    Table[n*(n + 1)*(n + 2)*(n + 3)*(2*n + 1)/12, {n, 0, 35}] (* Amiram Eldar, Sep 11 2022 *)
    Table[Sum[x^2 + y^2 + z^2, {x, 0, g}, {y, x, g}, {z, y, g}], {g, 0, 30}] (* Horst H. Manninger, Jun 19 2025 *)

Formula

G.f.: 2*x*(7*x+3)/(x-1)^6.
From Amiram Eldar, Sep 11 2022: (Start)
Sum_{n>=1} 1/a(n) = 136/15 - 64*log(2)/5.
Sum_{n>=1} (-1)^(n+1)/a(n) = 16*Pi/5 - 32*log(2)/5 - 82/15. (End)