A356254 Given n balls, all of which are initially in the first of n numbered boxes, a(n) is the number of steps required to get one ball in each box when a step consists of moving to the next box every second ball from the highest-numbered box that has more than one ball.
0, 1, 3, 5, 9, 13, 18, 23, 31, 39, 47, 56, 67, 78, 91, 103, 119, 135, 150, 167, 185, 203, 223, 243, 266, 289, 313, 337, 364, 391, 420, 447, 479, 511, 541, 574, 607, 640, 675, 711, 749, 787, 826, 865, 907, 949, 993, 1036, 1083, 1130, 1177, 1225, 1275, 1325, 1377
Offset: 1
Keywords
Examples
For n = 5, the number of balls in each box at each step is as follows: . | Boxes Step | #1 #2 #3 #4 #5 -----+------------------- 0 | 5 1 | 3 2 2 | 3 1 1 3 | 2 2 1 4 | 2 1 2 5 | 2 1 1 1 6 | 1 2 1 1 7 | 1 1 2 1 8 | 1 1 1 2 9 | 1 1 1 1 1 . Thus, a(5) = 9.
Links
- Peter J. Taylor, Recurrence for the number of steps required to get one ball in each box, answer to question on Mathoverflow.
Programs
-
PARI
a(n)=my(A, B, v); v=vector(n, i, 0); v[1]=n; A=0; while(v[n]==0, B=n; while(v[B]<2, B--); v[B+1]+=v[B]\2; v[B]-=v[B]\2; A++); A
Formula
If n = 2^k, then a(n) = (n/2)*(n + 1 - k) - 1. - Jon E. Schoenfield, Oct 17 2022
Define s(n) = floor(n/2) - 1 + s(floor(n/2)) + A181132(ceiling(n/2) - 2) for n > 3, 0 otherwise. Then a(n) = n*(n-1)/2 - s(n). - Jon E. Schoenfield, Oct 18 2022
Comments