A356261 Partition triangle read by rows, counting irreducible permutations with weakly decreasing Lehmer code, refining triangle A119308.
1, 1, 0, 1, 0, 2, 1, 0, 2, 1, 5, 1, 0, 2, 2, 7, 7, 9, 1, 0, 2, 2, 1, 9, 18, 3, 16, 24, 14, 1, 0, 2, 2, 2, 11, 22, 11, 11, 25, 75, 25, 30, 60, 20, 1, 0, 2, 2, 2, 1, 13, 26, 26, 13, 13, 36, 108, 54, 108, 9, 55, 220, 110, 50, 125, 27, 1
Offset: 0
Examples
Partition table T(n, k) begins: [0] 1; [1] 1; [2] 0, 1; [3] 0, 2, 1; [4] 0, [2, 1], 5, 1; [5] 0, [2, 2], [7, 7], 9, 1; [6] 0, [2, 2, 1], [9, 18, 3], [16, 24], 14, 1; [7] 0, [2, 2, 2], [11, 22, 11, 11], [25, 75, 25], [30, 60], 20, 1; [8] 0, [2, 2, 2, 1],[13, 26, 26, 13, 13],[36, 108, 54, 108,9],[55, 220, 110],[50, 125], 27, 1; Summing the bracketed terms reduces the triangle to A119308.
Links
- Peter Luschny, Permutations with Lehmer, a SageMath Jupyter Notebook.
Programs
-
SageMath
# using function perm_red_stats and reducible from A356264 def weakly_decreasing(L: list[int]) -> bool: return all(x >= y for x, y in zip(L, L[1:])) @cache def A356261_row(n: int) -> list[int]: if n < 2: return [1] return [0] + [v[1] for v in perm_red_stats(n, irreducible, weakly_decreasing)] def A356261(n: int, k: int) -> int: return A356261_row(n)[k] for n in range(8): print([n], A356261_row(n))