cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356262 Partition triangle read by rows counting the irreducible permutations sorted by the partition type of their Lehmer code.

This page as a plain text file.
%I A356262 #13 Aug 23 2022 06:03:25
%S A356262 1,1,0,1,0,2,1,0,2,1,9,1,0,2,3,24,17,24,1,0,2,3,3,98,29,23,156,91,55,
%T A356262 1,0,2,8,4,181,43,157,113,1085,243,418,714,360,118,1,0,2,7,11,4,300,
%U A356262 61,317,461,398,2985,536,1822,4366,417,7684,1522,3904,2788,1262,245,1
%N A356262 Partition triangle read by rows counting the irreducible permutations sorted by the partition type of their Lehmer code.
%C A356262 This is the Eulerian statistics of permutations as defined in A355777 restricted to the irreducible permutations. This is a refinement of A356263, which can be seen as Euler's triangle restricted to irreducible permutations.
%C A356262 The ordering of the partitions is defined in A080577. See the comments in A356116 for the definition of the terms 'partition triangle' and 'reduced partition triangle'.
%H A356262 Peter Luschny, <a href="https://github.com/PeterLuschny/PermutationsWithLehmer/blob/main/PermutationsWithLehmer.ipynb">Permutations with Lehmer</a>, a SageMath Jupyter Notebook.
%e A356262 [0] 1;
%e A356262 [1] 1;
%e A356262 [2] 0, 1;
%e A356262 [3] 0, 2, 1;
%e A356262 [4] 0, [2, 1], 9, 1;
%e A356262 [5] 0, [2, 3], [24, 17], 24, 1;
%e A356262 [6] 0, [2, 3, 3], [98,  29, 23], [156, 91], 55, 1;
%e A356262 [7] 0, [2, 8, 4], [181, 43, 157, 113], [1085, 243, 418], [714, 360], 118, 1;
%e A356262 Summing the bracketed terms reduces the triangle to A356263 .
%e A356262 .
%e A356262 The Lehmer mapping of the irreducible permutations to the partitions, case n = 4, k = 1: 2341 and 4123 map to the partition [3, 1], and 3412 map to the partition [2, 2]. Thus A356263(4, 1) = 2 + 1 = 3. Compare with the example in A355777.
%e A356262 .
%e A356262 The partition mapping of row 4:
%e A356262 [4] => 0
%e A356262 [3, 1] => 2
%e A356262 [2, 2] => 1
%e A356262 [2, 1, 1] => 9
%e A356262 [1, 1, 1, 1] => 1
%o A356262 (SageMath)
%o A356262 import collections
%o A356262 def reducible(p) -> bool:
%o A356262     return any(i for i in range(1, p.size())
%o A356262         if all(p(j) < p(k)
%o A356262             for j in range(1, i + 1)
%o A356262                 for k in range(i + 1, p.size() + 1)
%o A356262     )   )
%o A356262 def perm_irreducible_stats(n: int):
%o A356262     res = collections.defaultdict(int)
%o A356262     for p in Permutations(n):
%o A356262         if reducible(p): continue
%o A356262         l = p.to_lehmer_code()
%o A356262         c = [l.count(i) for i in range(len(p)) if i in l]
%o A356262         res[Partition(reversed(sorted(c)))] += 1
%o A356262     return sorted(res.items(), key=lambda x: len(x[0]))
%o A356262 @cached_function
%o A356262 def A356262_row(n):
%o A356262     if n <= 1: return [1]
%o A356262     return [0] + [v[1] for v in perm_irreducible_stats(n)]
%o A356262 def A356262(n, k): return A356262_row(n)[k]
%o A356262 for n in range(0, 8): print(A356262_row(n))
%Y A356262 Cf. A356263 (reduced triangle), A003319 (row sums).
%Y A356262 Cf. A355777.
%K A356262 nonn,tabf
%O A356262 0,6
%A A356262 _Peter Luschny_, Aug 01 2022