cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356263 Triangle read by rows. The reduced triangle of the partition triangle of irreducible permutations (A356262). T(n, k) for n >= 1 and 0 <= k < n.

This page as a plain text file.
%I A356263 #15 Aug 04 2022 14:57:47
%S A356263 1,0,1,0,2,1,0,3,9,1,0,5,41,24,1,0,8,150,247,55,1,0,14,494,1746,1074,
%T A356263 118,1,0,24,1537,10126,13110,4050,245,1,0,43,4642,52129,122521,79396,
%U A356263 14111,500,1,0,77,13745,248494,967644,1126049,425471,46833,1011,1
%N A356263 Triangle read by rows. The reduced triangle of the partition triangle of irreducible permutations (A356262). T(n, k) for n >= 1 and 0 <= k < n.
%C A356263 The triangle can be seen as Euler's triangle A008292 restricted to irreducible permutations.
%C A356263 See the comments in A356116 for the definition of the terms 'partition triangle' and 'reduced partition triangle'. The reduction procedure is formalized in the Sage program in A356116.
%H A356263 Peter Luschny, <a href="https://github.com/PeterLuschny/PermutationsWithLehmer/blob/main/PermutationsWithLehmer.ipynb">Permutations with Lehmer</a>, a SageMath Jupyter Notebook.
%e A356263 [1] [1]
%e A356263 [2] [0,  1]
%e A356263 [3] [0,  2,     1]
%e A356263 [4] [0,  3,     9,      1]
%e A356263 [5] [0,  5,    41,     24,      1]
%e A356263 [6] [0,  8,   150,    247,     55,       1]
%e A356263 [7] [0, 14,   494,   1746,   1074,     118,     1]
%e A356263 [8] [0, 24,  1537,  10126,  13110,    4050,   245,      1]
%e A356263 [9] [0, 43,  4642,  52129, 122521,   79396, 14111,    500,    1]
%e A356263 [10][0, 77, 13745, 248494, 967644, 1126049, 425471, 46833, 1011, 1]
%e A356263 .
%e A356263 The 5 irreducible permutations counted with T(5, 2) are 23451, 51234, 31524, 34512, and 45123.
%o A356263 (SageMath)  # Uses function 'reduce_partition_triangle' from A356116.
%o A356263 reduce_partition_triangle(A356262_row, 8)
%Y A356263 Cf. A356262 (partition triangle), A007059 (column 2), A003319 (row sums), A356114 (subdiagonal).
%Y A356263 Cf. A008292, A356116.
%K A356263 nonn,tabl
%O A356263 1,5
%A A356263 _Peter Luschny_, Aug 01 2022