This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356264 #11 Aug 23 2022 05:34:56 %S A356264 0,0,1,0,1,2,0,1,5,3,2,0,1,9,12,15,10,2,0,1,14,23,12,47,94,11,31,24,2, %T A356264 0,1,20,38,48,113,293,154,137,183,409,78,63,54,2,0,1,27,60,87,49,227, %U A356264 738,883,451,457,670,2157,1007,1580,79,605,1520,384,127,116,2,0 %N A356264 Partition triangle read by rows, counting reducible permutations, refining triangle A356265. %H A356264 Peter Luschny, <a href="https://github.com/PeterLuschny/PermutationsWithLehmer/blob/main/PermutationsWithLehmer.ipynb">Permutations with Lehmer</a>, a SageMath Jupyter Notebook. %e A356264 [0] 0; %e A356264 [1] 0; %e A356264 [2] 1, 0; %e A356264 [3] 1, 2, 0; %e A356264 [4] 1, [5, 3], 2, 0; %e A356264 [5] 1, [9, 12], [15, 10], 2, 0; %e A356264 [6] 1, [14, 23, 12], [ 47, 94, 11], [31, 24], 2, 0; %e A356264 [7] 1, [20, 38, 48], [113, 293, 154, 137], [183, 409, 78], [63, 54], 2, 0; %e A356264 Summing the bracketed terms reduces the triangle to A356265. %o A356264 (SageMath) %o A356264 import collections %o A356264 def reducible(p) -> bool: # p is a Sage-Permutation %o A356264 return any(i for i in range(1, p.size()) %o A356264 if all(p(j) < p(k) %o A356264 for j in range(1, i + 1) %o A356264 for k in range(i + 1, p.size() + 1) ) ) %o A356264 def void(L) -> bool: return True %o A356264 def perm_red_stats(n: int, part_costraint, lehmer_constraint): %o A356264 res = collections.defaultdict(int) %o A356264 for p in Permutations(n): %o A356264 if not part_costraint(p): continue %o A356264 l: list[int] = p.to_lehmer_code() %o A356264 if lehmer_constraint(l): %o A356264 c: list[int] = [l.count(i) for i in range(len(p)) if i in l] %o A356264 res[Partition(reversed(sorted(c)))] += 1 %o A356264 return sorted(res.items(), key=lambda x: len(x[0])) %o A356264 @cache %o A356264 def A356264_row(n: int) -> list[int]: %o A356264 if n < 2: return [0] %o A356264 return [v[1] for v in perm_red_stats(n, reducible, void)] + [0] %o A356264 def A356264(n: int, k: int) -> int: %o A356264 return A356264_row(n)[k] %o A356264 for n in range(0, 8): print(A356264_row(n)) %Y A356264 Cf. A356265 (reduced), A356262, A356263, A356291 (row sums). %K A356264 nonn,tabf %O A356264 0,6 %A A356264 _Peter Luschny_, Aug 05 2022