cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356265 Triangle read by rows. The reduced triangle of the partition triangle of reducible permutations (A356264). T(n, k) for n >= 1 and 0 <= k < n.

This page as a plain text file.
%I A356265 #11 Sep 11 2022 01:53:16
%S A356265 0,1,0,1,2,0,1,8,2,0,1,21,25,2,0,1,49,152,55,2,0,1,106,697,670,117,2,
%T A356265 0,1,223,2756,5493,2509,243,2,0,1,459,9966,36105,33669,8838,497,2,0,1,
%U A356265 936,34095,206698,342710,184305,29721,1007,2,0
%N A356265 Triangle read by rows. The reduced triangle of the partition triangle of reducible permutations (A356264). T(n, k) for n >= 1 and 0 <= k < n.
%H A356265 Peter Luschny, <a href="https://github.com/PeterLuschny/PermutationsWithLehmer/blob/main/PermutationsWithLehmer.ipynb">Permutations with Lehmer</a>, a SageMath Jupyter Notebook.
%e A356265 Triangle T(n, k) starts:                        [Row sums]
%e A356265 [1] [0]                                            [0]
%e A356265 [2] [1,   0]                                       [1]
%e A356265 [3] [1,   2,    0]                                 [3]
%e A356265 [4] [1,   8,    2,     0]                          [11]
%e A356265 [5] [1,  21,   25,     2,     0]                   [49]
%e A356265 [6] [1,  49,  152,    55,     2,    0]             [259]
%e A356265 [7] [1, 106,  697,   670,   117,    2,   0]        [1593]
%e A356265 [8] [1, 223, 2756,  5493,  2509,  243,   2, 0]     [11227]
%e A356265 [9] [1, 459, 9966, 36105, 33669, 8838, 497, 2, 0]  [89537]
%o A356265 (SageMath) # uses function A356264_row
%o A356265 @cache
%o A356265 def Pn(n: int, k: int) -> int:
%o A356265     if k == 0: return 0
%o A356265     if n == 0 or k == 1: return 1
%o A356265     return Pn(n, k - 1) + Pn(n - k, k) if k <= n else Pn(n, k - 1)
%o A356265 def reduce_parts(fun, n: int) -> list[int]:
%o A356265     funn: list[int] = fun(n)
%o A356265     return [sum(funn[Pn(n, k):Pn(n, k + 1)]) for k in range(n)]
%o A356265 def reduce_partition_triangle(fun, n: int) -> list[list[int]]:
%o A356265     return [reduce_parts(fun, k) for k in range(1, n)]
%o A356265 def A356265_row(n: int) -> list[int]:
%o A356265     return reduce_partition_triangle(A356264_row, n+1)[n-1]
%o A356265 for n in range(1, 8):
%o A356265     print(A356265_row(n))
%Y A356265 Cf. A356264 (partitions), A356291 (row sums).
%K A356265 nonn,tabl
%O A356265 1,5
%A A356265 _Peter Luschny_, Aug 16 2022