This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356265 #11 Sep 11 2022 01:53:16 %S A356265 0,1,0,1,2,0,1,8,2,0,1,21,25,2,0,1,49,152,55,2,0,1,106,697,670,117,2, %T A356265 0,1,223,2756,5493,2509,243,2,0,1,459,9966,36105,33669,8838,497,2,0,1, %U A356265 936,34095,206698,342710,184305,29721,1007,2,0 %N A356265 Triangle read by rows. The reduced triangle of the partition triangle of reducible permutations (A356264). T(n, k) for n >= 1 and 0 <= k < n. %H A356265 Peter Luschny, <a href="https://github.com/PeterLuschny/PermutationsWithLehmer/blob/main/PermutationsWithLehmer.ipynb">Permutations with Lehmer</a>, a SageMath Jupyter Notebook. %e A356265 Triangle T(n, k) starts: [Row sums] %e A356265 [1] [0] [0] %e A356265 [2] [1, 0] [1] %e A356265 [3] [1, 2, 0] [3] %e A356265 [4] [1, 8, 2, 0] [11] %e A356265 [5] [1, 21, 25, 2, 0] [49] %e A356265 [6] [1, 49, 152, 55, 2, 0] [259] %e A356265 [7] [1, 106, 697, 670, 117, 2, 0] [1593] %e A356265 [8] [1, 223, 2756, 5493, 2509, 243, 2, 0] [11227] %e A356265 [9] [1, 459, 9966, 36105, 33669, 8838, 497, 2, 0] [89537] %o A356265 (SageMath) # uses function A356264_row %o A356265 @cache %o A356265 def Pn(n: int, k: int) -> int: %o A356265 if k == 0: return 0 %o A356265 if n == 0 or k == 1: return 1 %o A356265 return Pn(n, k - 1) + Pn(n - k, k) if k <= n else Pn(n, k - 1) %o A356265 def reduce_parts(fun, n: int) -> list[int]: %o A356265 funn: list[int] = fun(n) %o A356265 return [sum(funn[Pn(n, k):Pn(n, k + 1)]) for k in range(n)] %o A356265 def reduce_partition_triangle(fun, n: int) -> list[list[int]]: %o A356265 return [reduce_parts(fun, k) for k in range(1, n)] %o A356265 def A356265_row(n: int) -> list[int]: %o A356265 return reduce_partition_triangle(A356264_row, n+1)[n-1] %o A356265 for n in range(1, 8): %o A356265 print(A356265_row(n)) %Y A356265 Cf. A356264 (partitions), A356291 (row sums). %K A356265 nonn,tabl %O A356265 1,5 %A A356265 _Peter Luschny_, Aug 16 2022