This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356266 #10 Aug 21 2022 14:10:10 %S A356266 1,1,0,1,0,1,1,0,1,2,1,1,0,1,3,3,3,3,1,0,1,4,4,2,6,12,2,4,6,1,0,1,5,5, %T A356266 5,10,20,10,10,10,30,10,5,10,1,0,1,6,6,6,3,15,30,30,15,15,20,60,30,60, %U A356266 5,15,60,30,6,15,1 %N A356266 Partition triangle read by rows, counting reducible permutations with weakly decreasing Lehmer code, refining triangle A356115. %H A356266 Peter Luschny, <a href="https://github.com/PeterLuschny/PermutationsWithLehmer/blob/main/PermutationsWithLehmer.ipynb">Permutations with Lehmer</a>, a SageMath Jupyter Notebook. %e A356266 [0] 1; %e A356266 [1] 1; %e A356266 [2] 0, 1; %e A356266 [3] 0, 1, 1; %e A356266 [4] 0, [1, 2], 1, 1; %e A356266 [5] 0, [1, 3], [3, 3], 3, 1; %e A356266 [6] 0, [1, 4, 4], [2, 6, 12], [2, 4], 6, 1; %e A356266 [7] 0, [1, 5, 5], [5, 10, 20, 10], [10, 10, 30], [10, 5], 10, 1; %e A356266 [8] 0, [1, 6, 6, 6],[3,15, 30, 30, 15],[15, 20, 60, 30, 60],[5,15,60],[30,6],15,1; %e A356266 Summing the bracketed terms reduces the triangle to A356115. %o A356266 (SageMath) # uses functions perm_red_stats and reducible from A356264. %o A356266 @cache %o A356266 def A356266_row(n: int) -> list[int]: %o A356266 if n < 2: return [1] %o A356266 return [0] + [v[1] for v in perm_red_stats(n, reducible, weakly_decreasing)] %o A356266 def A356266(n: int, k: int) -> int: %o A356266 return A356266_row(n)[k] %o A356266 for n in range(8): %o A356266 print(A356266_row(n)) %Y A356266 Cf. A356264, A356115 (reduced), A120588 (row sums). %K A356266 nonn,tabf %O A356266 0,10 %A A356266 _Peter Luschny_, Aug 16 2022