cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356267 a(n) = Sum_{k=0..n} binomial(2*n, k) * p(k), where p(k) is the partition function A000041.

This page as a plain text file.
%I A356267 #7 Aug 01 2022 14:24:43
%S A356267 1,3,17,97,583,3275,18988,104821,584441,3180889,17295626,92225785,
%T A356267 492811733,2590911097,13591889993,70605682273,365601169939,
%U A356267 1876312271003,9605682510676,48809295651049,247315330613099,1245888505795725,6256686417801919,31260996876796579
%N A356267 a(n) = Sum_{k=0..n} binomial(2*n, k) * p(k), where p(k) is the partition function A000041.
%F A356267 a(n) ~ erfc(Pi/(2*sqrt(6))) * 2^(2*n - 3) * exp(Pi*sqrt(2*n/3) + Pi^2/24) / (sqrt(3)*n).
%t A356267 Table[Sum[Binomial[2*n, k] * PartitionsP[k], {k, 0, n}], {n, 0, 30}]
%Y A356267 Cf. A000041, A032443, A218481, A286955, A356268.
%K A356267 nonn
%O A356267 0,2
%A A356267 _Vaclav Kotesovec_, Aug 01 2022