cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356268 a(n) = Sum_{k=0..n} binomial(2*n, k) * q(k), where q(k) is the number of partitions into distinct parts (A000009).

This page as a plain text file.
%I A356268 #7 Aug 01 2022 14:24:48
%S A356268 1,3,11,62,289,1472,7581,38014,184453,918512,4548393,22077762,
%T A356268 107423503,516720332,2483445404,11959145079,57022343425,270173627092,
%U A356268 1282971321633,6047971597490,28446033085527,133714464665108,625893086713686,2919093380089383,13596052503945537
%N A356268 a(n) = Sum_{k=0..n} binomial(2*n, k) * q(k), where q(k) is the number of partitions into distinct parts (A000009).
%F A356268 a(n) ~ erfc(Pi/(4*sqrt(3))) * 2^(2*n - 3) * exp(Pi*sqrt(n/3) + Pi^2/48) / (3^(1/4) * n^(3/4)).
%t A356268 Table[Sum[Binomial[2*n, k] * PartitionsQ[k], {k, 0, n}], {n, 0, 30}]
%Y A356268 Cf. A000009, A032443, A266232, A307496, A356267.
%K A356268 nonn
%O A356268 0,2
%A A356268 _Vaclav Kotesovec_, Aug 01 2022