A356280 a(n) = Sum_{k=0..n} binomial(2*n, n-k) * p(k), where p(k) is the partition function A000041.
1, 3, 12, 50, 211, 894, 3791, 16068, 68032, 287675, 1214761, 5122428, 21571028, 90718913, 381050570, 1598645263, 6699355413, 28044720813, 117281866330, 489999068614, 2045341248508, 8530263939665, 35547083083270, 148015639243691, 615870619714675, 2560734764460360
Offset: 0
Keywords
Links
- Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, VI.26. Catalan sums, p.417.
Programs
-
Mathematica
Table[Sum[PartitionsP[k]*Binomial[2*n, n-k], {k, 0, n}], {n, 0, 30}] nmax = 30; CoefficientList[Series[Sum[PartitionsP[k]*((1-2*x-Sqrt[1-4*x])/(2*x))^k / Sqrt[1-4*x], {k, 0, nmax}], {x, 0, nmax}], x]
Formula
a(n) ~ 2^(2*n - 1/2) * exp(3^(1/3) * Pi^(4/3) * n^(1/3) / 4) / (3*Pi*n)^(2/3).