cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356284 a(n) = Sum_{k=0..n} binomial(3*n, k) * p(k), where p(k) is the partition function A000041.

This page as a plain text file.
%I A356284 #8 Aug 02 2022 05:51:19
%S A356284 1,4,37,334,3280,29437,282253,2517904,23209785,206685325,1858085653,
%T A356284 16266231810,144339750406,1250038867329,10882952174845,93546973843450,
%U A356284 804847296088574,6843680884286307,58300294406199829,491683063753997014,4148296662116385627,34746182976196757434
%N A356284 a(n) = Sum_{k=0..n} binomial(3*n, k) * p(k), where p(k) is the partition function A000041.
%F A356284 a(n) ~ 3^(3*n) * exp(Pi*sqrt(2*n/3)) / (sqrt(Pi) * n^(3/2) * 2^(2*n + 2)).
%t A356284 Table[Sum[Binomial[3*n, k] * PartitionsP[k], {k, 0, n}], {n, 0, 30}]
%o A356284 (PARI) a(n) = sum(k=0, n, binomial(3*n, k)*numbpart(k)); \\ _Michel Marcus_, Aug 02 2022
%Y A356284 Cf. A000041, A188675, A356267, A356285.
%K A356284 nonn
%O A356284 0,2
%A A356284 _Vaclav Kotesovec_, Aug 01 2022