cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356285 a(n) = Sum_{k=0..n} binomial(3*n, k) * q(k), where q(k) is the number of partitions into distinct parts (A000009).

This page as a plain text file.
%I A356285 #5 Aug 02 2022 05:51:25
%S A356285 1,4,22,214,1509,12770,107884,874365,6834843,56722759,463069914,
%T A356285 3666488610,29512199193,233492075573,1858649112464,14890457067926,
%U A356285 117154630898329,917101099859767,7257072314543086,56653800922475280,442687465112658972,3467083846726752495
%N A356285 a(n) = Sum_{k=0..n} binomial(3*n, k) * q(k), where q(k) is the number of partitions into distinct parts (A000009).
%F A356285 a(n) ~ 3^(3*n + 1/4) * exp(Pi*sqrt(n/3)) / (sqrt(Pi) * n^(5/4) * 2^(2*n + 2)).
%t A356285 Table[Sum[Binomial[3*n, k] * PartitionsQ[k], {k, 0, n}], {n, 0, 30}]
%Y A356285 Cf. A000009, A188675, A356268, A356284.
%K A356285 nonn
%O A356285 0,2
%A A356285 _Vaclav Kotesovec_, Aug 01 2022