cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356286 a(n) = Sum_{k=0..n} binomial(3*k, k) * p(k), where p(k) is the partition function A000041.

This page as a plain text file.
%I A356286 #8 Aug 02 2022 05:51:32
%S A356286 1,4,34,286,2761,23782,227986,1972186,18152548,158757298,1420647928,
%T A356286 12258704248,108637887148,929002856992,8065133782792,68761800685576,
%U A356286 589631899738033,4976639418495358,42293283621258283,354415428588891283,2982701933728936648,24857294772400460368
%N A356286 a(n) = Sum_{k=0..n} binomial(3*k, k) * p(k), where p(k) is the partition function A000041.
%F A356286 a(n) ~ 3^(3*n+3) * exp(Pi*sqrt(2*n/3)) / (23 * sqrt(Pi) * n^(3/2) * 2^(2*n+3)).
%t A356286 Table[Sum[Binomial[3*k, k] * PartitionsP[k], {k, 0, n}], {n, 0, 30}]
%o A356286 (PARI) a(n) = sum(k=0, n, binomial(3*k, k)*numbpart(k)); \\ _Michel Marcus_, Aug 02 2022
%Y A356286 Cf. A000041, A188675, A356269, A356287.
%K A356286 nonn
%O A356286 0,2
%A A356286 _Vaclav Kotesovec_, Aug 01 2022