A356291 Number of reducible permutations.
0, 0, 1, 3, 11, 49, 259, 1593, 11227, 89537, 799475, 7917897, 86257643, 1025959345, 13234866787, 184078090137, 2746061570587, 43736283267137, 740674930879379, 13289235961616937, 251805086618856395, 5024288943352588369, 105295629327037117123
Offset: 0
Keywords
Programs
-
Maple
A356291 := n -> n! - A003319(n): seq(A356291(n), n = 0..22);
-
Python
def A356291_list(size: int): F, R, C = 1, [0], [1] + [0] * (size - 1) for n in range(1, size): F *= n for k in range(n, 0, -1): C[k] = C[k - 1] * k C[0] = -sum(C[k] for k in range(1, n + 1)) R.append(F + C[0]) return R print(A356291_list(23)) # The test predicate, not suitable for calculation: def reducible(p) -> bool: return any(i for i in range(0, len(p)) if all(p[j] < p[k] for j in range(0, i) for k in range(i, len(p)) )) from itertools import permutations for n in range(8): print(len([p for p in permutations(range(n)) if reducible(p)]))
Formula
a(n) = n! - A003319(n).
a(n) = Sum_{j=1..n-1} (n - j)!*A003319(j).
a(n) ~ n!*(2/n + 1/n^2 + 5/n^3 + 32/n^4 + 253/n^5 + 2381/n^6 + ...). This follows from Vaclav Kotesovec's formula in A003319, see A260503 for more coefficients. In particular 2*(n-1)! < a(n) for n >= 5.