This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356298 #17 Aug 07 2022 04:45:18 %S A356298 1,7,41,290,2074,18444,165108,1749264,19412496,241299360,3097006560, %T A356298 45546606720,673536159360,10986261431040,187460277177600, %U A356298 3445281394329600,64637392771123200,1325310849663897600,27498565425087590400,616389533324974080000 %N A356298 a(n) = n! * Sum_{k=1..n} sigma_2(k)/k. %F A356298 E.g.f.: (1/(1-x)) * Sum_{k>0} x^k/(k * (1 - x^k)^2). %F A356298 E.g.f.: -(1/(1-x)) * Sum_{k>0} k * log(1 - x^k). %F A356298 a(n) ~ n! * zeta(3) * n^2 / 2. - _Vaclav Kotesovec_, Aug 07 2022 %t A356298 Table[n! * Sum[DivisorSigma[2, k]/k, {k, 1, n}], {n, 1, 20}] (* _Vaclav Kotesovec_, Aug 07 2022 *) %o A356298 (PARI) a(n) = n!*sum(k=1, n, sigma(k, 2)/k); %o A356298 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, x^k/(k*(1-x^k)^2))/(1-x))) %o A356298 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(-sum(k=1, N, k*log(1-x^k))/(1-x))) %Y A356298 Cf. A001157, A064602, A356010, A356297, A356323. %K A356298 nonn %O A356298 1,2 %A A356298 _Seiichi Manyama_, Aug 03 2022