This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356325 #10 Aug 05 2022 10:50:55 %S A356325 0,0,0,0,1,0,0,0,0,0,0,1,2,1,0,0,0,2,2,0,0,0,0,0,3,0,0,0,0,1,0,0,0,0, %T A356325 1,0,0,0,0,0,4,0,0,0,0,0,1,2,1,5,5,1,2,1,0,0,0,2,2,5,5,5,2,2,0,0,0,0, %U A356325 0,3,5,5,5,5,3,0,0,0,0,1,0,0,5,5,6,5,5,0,0,1,0 %N A356325 Array A(n, k), n, k >= 0, read by antidiagonals; the terms in the negaFibonacci representation of A(n, k) are the terms in common in the negaFibonacci representations of n and k. %C A356325 This sequence has similarities with A334348. %H A356325 Rémy Sigrist, <a href="/A356325/a356325.png">Colored representation of the array for n, k <= 1000</a> (white for 0's, shades of blue for negative values, shades of red for positive values) %H A356325 Rémy Sigrist, <a href="/A356325/a356325.gp.txt">PARI program</a> %H A356325 Wikipedia, <a href="https://en.wikipedia.org/wiki/NegaFibonacci_coding">NegaFibonacci coding</a> %H A356325 <a href="/index/Z#Zeckendorf">Index entries for sequences related to Zeckendorf expansion of n</a> %F A356325 A(n, k) = A(k, n). %F A356325 A(n, n) = n. %F A356325 A(n, 0) = 0. %F A356325 A(n, k) = A356327(A215024(n) AND A215024(k)) (where AND denotes the bitwise AND operator). %e A356325 Array A(n, k) begins: %e A356325 n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 %e A356325 ---+------------------------------------------------ %e A356325 0| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 %e A356325 1| 0 1 0 1 0 0 1 0 1 0 0 1 0 0 %e A356325 2| 0 0 2 2 0 0 0 2 2 0 0 0 0 0 %e A356325 3| 0 1 2 3 0 0 1 2 3 0 0 1 0 0 %e A356325 4| 0 0 0 0 4 5 5 5 5 -1 0 0 -1 0 %e A356325 5| 0 0 0 0 5 5 5 5 5 0 0 0 0 0 %e A356325 6| 0 1 0 1 5 5 6 5 6 0 0 1 0 0 %e A356325 7| 0 0 2 2 5 5 5 7 7 0 0 0 0 0 %e A356325 8| 0 1 2 3 5 5 6 7 8 0 0 1 0 0 %e A356325 9| 0 0 0 0 -1 0 0 0 0 9 10 10 12 13 %e A356325 10| 0 0 0 0 0 0 0 0 0 10 10 10 13 13 %e A356325 11| 0 1 0 1 0 0 1 0 1 10 10 11 13 13 %e A356325 12| 0 0 0 0 -1 0 0 0 0 12 13 13 12 13 %e A356325 13| 0 0 0 0 0 0 0 0 0 13 13 13 13 13 %e A356325 . %e A356325 For n = 14 and k = 43: %e A356325 - using F(-k) = A039834(k): %e A356325 - 14 = F(-1) + F(-7), %e A356325 - 43 = F(-2) + F(-4) + F(-7) + F(-9), %e A356325 - so A(14, 43) = F(-7) = 13. %o A356325 (PARI) See Links section. %Y A356325 Cf. A004198, A039834, A215024, A309076, A334348, A356326, A356327. %K A356325 nonn,base,tabl %O A356325 0,13 %A A356325 _Rémy Sigrist_, Aug 03 2022