A356327 Replace 2^k in binary expansion of n with A039834(1+k).
0, 1, -1, 0, 2, 3, 1, 2, -3, -2, -4, -3, -1, 0, -2, -1, 5, 6, 4, 5, 7, 8, 6, 7, 2, 3, 1, 2, 4, 5, 3, 4, -8, -7, -9, -8, -6, -5, -7, -6, -11, -10, -12, -11, -9, -8, -10, -9, -3, -2, -4, -3, -1, 0, -2, -1, -6, -5, -7, -6, -4, -3, -5, -4, 13, 14, 12, 13, 15, 16
Offset: 0
Examples
For n = 13: - 13 = 2^3 + 2^2 + 2^0, - so a(13) = A039834(4) + A039834(3) + A039834(1) = -3 + 2 + 1 = 0.
Links
Crossrefs
Programs
-
Mathematica
Table[Reverse[#].Fibonacci[-Range[Length[#]]] &@ IntegerDigits[n, 2], {n, 0, 69}] (* Rémy Sigrist, Aug 05 2022 *)
-
PARI
a(n) = { my (v=0, k); while (n, n-=2^k=valuation(n, 2); v+=fibonacci(-1-k)); return (v) }
-
Python
from sympy import fibonacci def A356327(n): return sum(fibonacci(-a)*int(b) for a, b in enumerate(bin(n)[:1:-1],start=1)) # Chai Wah Wu, Aug 31 2022
Comments