cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356335 Expansion of e.g.f. ( Product_{k>0} 1/(1-x^k) )^(1/(1-x)).

This page as a plain text file.
%I A356335 #12 Aug 04 2022 10:19:46
%S A356335 1,1,6,39,332,3290,38994,517986,7762880,128029464,2311675560,
%T A356335 45188359920,952047539112,21452758881528,515073388373712,
%U A356335 13114579450948920,352881761400606720,10000259978380933440,297654582665846499264,9280441162956638320704
%N A356335 Expansion of e.g.f. ( Product_{k>0} 1/(1-x^k) )^(1/(1-x)).
%F A356335 a(0) = 1; a(n) = Sum_{k=1..n} A356010(k) * binomial(n-1,k-1) * a(n-k).
%o A356335 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace((1/prod(k=1, N, 1-x^k))^(1/(1-x))))
%o A356335 (PARI) a356010(n) = n!*sum(k=1, n, sigma(k)/k);
%o A356335 a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, a356010(j)*binomial(i-1, j-1)*v[i-j+1])); v;
%Y A356335 Cf. A000041, A000203, A356010, A356336, A356337.
%K A356335 nonn
%O A356335 0,3
%A A356335 _Seiichi Manyama_, Aug 04 2022